
DTIC I

'ELEC'E

TOOL USING THE X WINDOW SYSTEM

THESIS

Jay-Evan J. Tevis II

Captain, USAF j
AFIT/GCS/ENG/90D-15 Af

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE IMSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

___ _ 9112 1 02

A FIT/GCS/ENG/90D-15

AN ADA-BASED FRAMEWORK FOR AN IDEF0 CASE

TOOL USING THE X WINDOW SYSTEM

THESIS

Jay-Evan J. Tevis II

Captain, USAF-

AFIT/GCS/ENG/90D-15D TIC
t ELECTE
%JAN 2 2 1991AB

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-15

AN ADA-BASED FRAMEWORK FOR AN IDEFo CASE

TOOL USING THE X WINDOW SYSTEM

THESIS

Presented to the Faculty-of the School of Engineering

of the Air Force -Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science-in Computer Systems

Jay-Evan J. Tevis II, B.S. in Computer Science

Captain, USAF

December, 1990

Approved for public release; distribution unlimited

Preface

The purpose of this thesis is to document the design strategy, implementation methodology,

testing, and evaluation performed in developing an Ada-based framework for SAtoollI using the X

Window System. SAtoollI is an IDEFo graphical project editor and data dictionary editor. IDEFo

is the ICAM Definition Method Zero graphical notation language adopted by the U.S. Air Force

to produce a function model of a manufacturing system or environment (23:1-1). The Air Force

Institute of Technology is conducting on-going research in the use of IDEFo in the requirements

analysis phase of the software lifecycle. The development of SAtoolil is another part of AIFIT's

research efforts associated with the Strategic-Defense Initiative Organiz& ion (SDIO) and its interct

in the IDEF0 language.

The SAtoollI predecessor program, an IDEF0 graphical -editor called Sr-.,ooi, was written

-in the C programming language and used-the window and graphics capabilities pro.vided for Sun

Microsystems workstations. SAtoollI not only enhances the IDEFO graphical editing features of

SAtool, but also is written completely in Ada and operates independently of any specific window

system or computer hardware. This independence is implied- through the use of an Ada-based

graphical support environment developed for SAtoollI, and the X Window System developed by

the Massachusetts Institute of Technology (29:80). Along with the machine-independent windov

features, SAtoollI is designed around an abstract entity-relationship model of the IDEF6 language.

This abstract model, consisting of an essential model and a drawing model, was developed in earlier

research at AFIT and-revised during this research effort.

I extend my gratitude to several people who supported me during this research and software

development effort. I first want to thank Captain Terry Kitchen with whom I was privileged to work

-for six months as he developed the essential model and expert system aspect of SAtoollI while I

-worked on the drawing model and graphical aspect. I also want to thank my advisor, Dr. Ilartrum,

whose ideas and insight made SAtooll possible, and Dave Doak, whose system administration work

ii

made the use of the Ada bindings to the X Window System a reality. I especially want to thank

my wife, Jackie, and my two little buddies, Miko and Yoshi, for their understanding and support

during this research. I finally want to thank God who -willingly offered His expert programming

advice whenever I needed it.

Jay-Evan J. Tevis II

Acoession For

NTIS GRA&I
DTIC TAB []
Unannounced El
Justificatio

By
-Distribution/

Availability Code$
Avail and/or

Dist Special.

A

iii

Table of Contents

Page

Preface ii

Table-of Contents. iv

List of Figures xiv

Abstract. xv

1. Introduction. 1-1

1.1 Background 1-1

1.2 Problem.. 1.?2

1.3 Summary of Current Knowledge 1-3

i.3.1 The X Window System 1-3

1.3.2 Object-Oriented Data Modeling 1-4

1.3.3 Graphical -User Interfaces. 1-5

1.4 Assumptions.- 5

1.5 Scope 1-5

1.6 Standards. 1-6

1.7 Approach. 1-6

1.8 Equipment and-Software. 1-8

1.9 Sequence of Presentation. 1-8

II. Literature Review. 2-1

2.1 Introduction. 2-1

2.1.1 The Need for Concise Information. 2-1

2.2 The X Window System 2-1

2.2.1 What is a Window System?. 2-1

IV

Page

2.2.2 The Origin of the X Window Systei.i 2-2

2.2.3 Why Change To X? 2-2

2.2.4 The Client/Server Model and Distributed Computing -3

2.2.5 Mechanism But Not Policy 2-3

2.2.6 X Out On The Road 2-4

2.2.7 Conclusion 2-4

2.3 Object-Oriented Data Modeling 2-4

2.3.1 The Need for Object-Oriented Data Modeling 2-4

2.3.2 Objects, Attributes, and Relationships 2-5

2.3.3 Data Model Implementation : The Keystone Methodology.. 2-6

2.3.4 Conclusion 2-7

2.4 Graphical User Interfaces 2-7

2.4.1 Why A Graphical User Interface? 2-7

2.4.2 An Object-Oriented Approach to a Graphical User Interface 2-7

2.4.3 Graphical User Interface-Consistency 2-9

2.5 Summary 2-10

III. SAtoolI Design 3-1

3.1 Introduction 3-1

3.2 SAtool in C 3-1

3.2.1 SAtool Design and Implementation 3-1

3.2.2 Suggested Changes to SAtool 3-3

3.2.3 Some Final Thoughts on SAtool 3-5

3.3 Original Essential and Drawing Models 3-5

3.3.1 The-Original Essential and-Drawing Models for IDEFo 3-5

3.3.2 Initial Implementation of the Essential Model 3-6

3.4 Revised- Essential and Drawing Models 3-6

3.4.1 Review and Revision of the IDEF0 Models 3-6

v

Page

3.4.2 Changes to the Essential Model 3-6

3.4.3 Changes to the Drawing Model 3-13

3.4.4 The Revised Drawing Model 3-13

3.5 Machine-Independent Ada Graphical Support Environment (MAGSE) 3-15

3.5.1 Requirements Analysis for the MAGSE 3-15

3.5.2 The Object-Oriented Design 3-20

3.5.3 Separation of Graphical Support Environment and Application 3-22

3.6 Graphical User Interface 3-23

3.6.1 Requirements Analysis for the SAtoolII Graphical User Interface 3-23

3.6.2 The Object-Oriented Design 3-24

3.6.3 Intended Use and Expected User for SAtoolI 3-25

3.6.4 Help from a Graphical Support Environment 3-25

3.7 IDEi"0 Complex Drawing-Objects 3-26

3.7.1 Complex Objects from Primitive Ones 3-26

3.8 Project Facts and CLIPS 3-26

3.8.1 Format for the Project Files 3-26

3.8.2 IDEF0 Fact and-File Classes 3-27

3.8.3 Format for Miscellaneous Files 3-29

3.9 Error Handling 3-29

3.10 Macro Operations and Model Constraint Management 3-29

3.11 SAtoolII - An Integrated -Design 3-30

3.12 Summary .. 3-30

IV. SAtoolIl Implementation 4-1

4.1 Introduction 4-1

4.2 Generic Multiple Object Manager 4-1

4.2.1 The Need for a Multiple Object Manager 4-1

4.2.2 Modifications to the Nonpriority Balking Queue Component 4-2

vi

Page

4.2.3 The Generic Multiple Object Manager Package 4-2

4.3 Essential and Drawing Models 4-2

4.3.1 The Need for a Transformation Methodology 4-2

4.3.2 Transforming an Entity-Relationship Model into Ada 4-3

4.3.3 The Multiple Object Manager and Inheritance 4-5

4.3.4 The Ada Packages for the Essential and Drawing Models . . 4-5

4.4 Machine-Independent Ada Graphical Support Environment (MAGSE) 4-8

4.4.1 Comparison of Design Goals with Implementation Factors . . 4-8

4.4.2 The Breadth and Depth of the X Window-System 4-8

4.4.3 The SAIC Ada Bindings to the X Window-System 4-8

4.4.4 The MAGSE : A Level-of Abstraction 4-9

4.4.5 The MAGSE Implementation 4-9

4.5- Graphical User Interface 4-12

4.5.1 Packages for the Graphical User Interface 4-12

4.5.2 What The Graphical User Interface Does and Doesn't Do . . 4-12

4.6 IDEF0 Complex Drawing Objects 4-14

4.6.1 IDEFo-Geometry Package 4-14

4.7 Project Facts and CLIPS 4-14

4.8 Error and Exception Handling 4-15

4.9 Macro Operations and Model Constraint Management 4-16

4.10 SAtoollI - An-Incremental Implementation 4-17

4.10.1 The SAtoolII main procedure 4-17

4.10.2 The Component Integration 4-17

4.10.3 SAtoolIl program documentation 1-18

4.11 Summary .. 4-18

vii

Page

V. SAtoolll Testing and Evaluation. 5-1

5.1 Introduction. 5-I

5.2 Testing. 5-1

5.2.1 Purpose of the Test Suite. 5-1

5.2.2 Test Suite For SAtoolIl 5-1

5.2.3 Test Results 5-3

5.3 Evaluation. 5-1

5.4 Summary. 5-5

VI. Conclusions andl Recommendations. 6-1

6.1 Summary. 6-1

6.2 Conclusions 6-1

6.2.1 Research Accomplishments 6-1

6.2.2 Ada and Graphics 6-2

6.2.3 SAtoollII.. 6-2

6.3 Recommendations 6-3

6.3.1 SAtooll Main Menu Selections. 6-3

6.3.2 SAtoollII Command Line Options. 6-4

Appendix A. Ada Bindings to the X Window System A-1

A.1 Introduction. A-1

A.2 Ada Bindings Overview A-1

A.3 Configuring an Ada-X Window System -Development Environment . A- I

A.4 Compiling, Linking,-and Running an X-Window Client in Ada A-4

A.5 Using The Pragma. Interface A-5

A.5.1 Routincs.c Source Code File in-C. A-5

A.5.2 Driver.a Source Code File in Ada. A-6

A.5.3 Compiling, Linking, and Running The Program A-6

A.6 Summary. A-6

viii

Page

Appendix B. MAGSE Reference Manual 1-1

B3.1 Introduction to the MAGSE Reference Manual- 1

13.2 The MAGSE..Interface Package B-2

B.2.1 Global Constants. B-2

13.2.2 Global Types 13-2

B.2.3 Global Command Line Variables. B-4

B.2.4 Constructors B-4

B.2.5 Selectors. B-4

B.2.6 Exceptions. 1-4

13.3 The Window..Manager Package. B-5

B.3.1 Constructors. 13-5

B.3.2 Selectors 1-6

B.3.3 Exceptions- 6

B.4 The Drawing-.Primitive Package B-6

B.4.1 Constructors B-6

B.4.2 Selectors. B-7

B.4.3 Exceptions. B-7

B.5 The Input-Device Package.- 7

B.5.1 Constructors 1-7

B.5.2 Selectors B-8

B.5.3 Exceptions. 1-8

8.6 The Matrix2D-Stack Package B-8

B.6.1 Constructors. B-S

B.6.2 Selectors B-9

B.6.3 Exceptions B-9

B.7 The Plane2D Package. B-9

B.7.1 Cot tructors. B-9

ix

Page

B.7.2 Selectors B-9

B.7.3 Exceptions. B-9

13.8 The Matrix3D.Stack Package B-9

B.8.1 Constructors. B-9

B3.8.2 Selectors. B-10

B.8.3 Exceptions. B-l0

13.9 The Pyrariid3D) Package. B-10

B.9.1 Constructors. B-10

B3.9.2 Selectors B-11

B.9.3 Exceptions B-11

Appendix C. MAGSE Source Code Information C-1

0.1 Introduction. C-1

0.2 File Names-and Contents C-1

Appendix D. SAtoolllConfiguration Guide. D-1

D.1 Introduction to the SAtoolll Configuration Guide. 1

D.2 SAtoollI Configuration File. D-I

Appendix E. SAtoolll User's Manual E-1

E.1 INTRODUCTION 1

E.1.1 Background and Purpose. E- I

E.1.2 Features E- 1

E.1.3 System Requirements. E-1

E.1.4 Overview. E-1

E.2 GETTING- STARTED. E-2

E.2.1 Quick Start E-2

E,2.2 Operating Environment E-2

E.2.3 Command Line Options. E-2

X

Page

E.3 A GUIDED TOUR................................. E-6

E.3.1 Introduction................................ E -

E.3.2 The Main Screen............................. E-6

E.3.3 The Keyboard and Mouse E-8

E.3.4 Using Objects and Tools. E-8

E.3.5 Creating and Viewing a Project E-8

E.3.6 Saving and Loading a Project.- 8

E.3.7 Error Handling. E-9

E.3.8 Exiting SAtoolIIl.. E-9

E.3.9 Summary. E-9

-E.4 OBJECTS AND TOOLS E-10

E.4.1 Introduction E-10

E.4.2 The Objects E-10

E.4.3 The Tools E-11

E.4.4 Summary E-12

E.5 MAIN SCREEN MENUS E-13

E.5.1 Introduction E-13

E.5.2 PROJECT Menu. E-13

E.5.3 DIAGRAM Menu. E-14

E.5.4 DICTIONARY Menu E-14

E.5.5 TAXI Menu. E-15

E.5.6 VIEW Menu.- 15

E.5.7 OPTIONS Menu............................. E- 15

E.5.8 OTHER Menu.............................. E-l16

E.6 PRINTING A WINDOW...................... -18

E.6.1 Introduction............................... E-18

E.6.2 X Clients for Window Capturing and Printing........... E-18

E.6.3 Printing an IDEF0 Diagram and Project.............. E-19

xi

Page

Appendix F. SAtoolIlI Source Code Information F-1

F.1 Introduction F-1

F.2 Generic Manager and Environment Types File Names and Contents . F-1

F.3 Drawing Model File Names and Contents F-1

F.4 Drawing Model Demonstration File Names and Contents F-1

F.5 Essential Model File Names and Contents F-1

F.6 SAtoolII Interface Prototype File Names and Contents F-2

Appendix G. Commonly Asked Ada and X Window System Questions G-1

G.1 Introduction G-1

G.2 Ada Questions and Answers G-1

G.2.1 Why do I get syntax errors on the pragma interface statements

in the SAIC Ada code? G-1

G.2.2 When using the Verdix Ada-compiler on a Sun workstation

why do I sometimes get a "write failed" error? G-1-

G.2.3 When using the Verdix Ada compiler on a Sun workstation why

do I sometimes get a "cannot allocate more memory" error? . G-1

G.2.4 When using the Verdix Ada compiler why do I get the error

message "Spec of-s not found"? G-1

G.2,.5 How do I link the X Window System xlib into my Ada program? G-2

G.3 General X Window System Questions- and Answers G-2

G.3.1 Where can I obtain X Window System version 11 release 4

source code files? G-2

G.3.2 Where and how can ! obtain other X Window System client

source code files? G-2

G.3.3 Where can I find books and articles on X that are good for

beginners? G-3

G.3.4 What do these X Window System abbreviations mean? . . . G-4

G.3.5 How can I get an X Window System server on a PC? G-

xii

Page

G.3.6 Where can I obtain an X Window System paint/drawv program? G-5

G.3.7 Where can I get a PostScript previewer for the X Windowv

System?7 . -5

G .3.8 How do I convert Mac/TIFF/GIF/Suni/PICT/Face/imng/-AX/et-c

images to the X Window System format? -6

G.3.9 Where can I obtain other language bindings than C to the X

Window System libraries?.- 6

G.4 X Window System Programming Questions and Answers- 6

G.4.1 Why do I get an error message that my display does not open

when I run an X client program?.- 6

G.4.2 What is the difference between a Screen and a. screen? -7

G.4.3 Why doesn't anything appear when I run this simple X client

program?.- 7

G.4.4 Why doesn't my program get the keystrokes I select for? . . G-8

Appendix-IL IDEF0 Drawing Model Project File Format.... -

-11. Project File Format.... I

-112 Explanation of the Project -File and Internal Data Structure 11-4

Appendix I. Executive Overview-

J.I Introduction- 1

'12 ERD-to-OOD Transformation.- 1

1.3 M~achine-independent Ada. Graphical Support Environment 1-2

1.4 SAtoolll - an l1)EFo Project Editor. 1-4

1.5 Conclusions 1-

B~ibliography. BIB-I

Vita,.. VITA-i

X1II

List of Figures

Figure Page

3.1. Original IDEFo ACTIVITY Essential Data Model 3-7

3.2. Original IDEFo DATA ELEMENT Essential Data Model 3-8

3.3. Original IDEFo ACTIVITY Drawing Data Model 3-9

3.4. Original IDEFO DATA ELEMENT Drawing Data Model 3-10

3.5. Revised IDEFo ACTIVITY Essential Data Model 3-11

3.6. Revised IDEFo DATA ELEMENT Essential Data Model 3-12

3.7. IDEFo Drawing Data Model (Classes and Subclasses) 3-16

3.8. IDEFO Drawing Data Model (Entities and Attributes) 3-17

3.9. IDEFO Drawing Data Model- (Entities and Relationships) 3-18

3.10. IDEFo Drawing Data Model Illustration 3 19

3.11. Machine-independent Ada Graphical Support Environment Design 3-21

3.12. SAtoollI Project Fact Utilitieso and Files Design 3-28

3.13. SAtoolII Integrated Component Design 3-31

4.1. IDEF0 Essential Data-Model Implementation Packages 4-6

4.2. IDEFo Drawing Data Model Implementation Packages 4-7

4.3. MAGSE Implementation Packages 4-11

4.4. SAtoolII- Graphical User-Interface Implementation Packages 4-13

4.5. SAtoolII Project Fact Files Suggested Implementation 4-15

4.6. SAtoolIl Overall Implementation Architecture 4-19

A.1. X Window System and Ada Bindings Directory Tree A-2

E.1. SAtoolII Main Screen Face E-7

xiv

AFIT/GCS/ENG/90D-15

Abstract

This thesis docume ts the design strategy, implementation methodology, testing, and eval-

uation used in develo ng an Ada-based framework for SAtoolII using the X Window System.

SAtooilI is an IDEF graphical project editor and data dictionary editor. IDE-istie ICAM

Definition Method Zero graphical notation language adopted by the U.S. Air Force to produce a

function model of a manufacturing system or environment (23:1-1). The Air Force Institute of
:v) 0

Technolo.y is conducting on-goig research in the use of IDEF in the requirements analysis phase

of the softw, :e lifecycle.

The thesis begins by providing background information on-the X Window System, object-

oriented data modeling, and graphical user interfaces. It then describes how SAtoolIl was designed
y5vb 0'

around an abstract entity-relationship model oftthe IDEFlanguage, an abstract model that was

developed in earlier research at AFIT and broken down at that -time into an essential model and

a drawing model. It also describes the design-of a machine-independent Ada graphical support

environment which provides fundamental multi-window and graphical capabilities, while shiclding

an Ada application from the intricacies and distinctiveness of specific window systems.

Following the design information, the thesis describes how the SAtoolII program was imple-

mented incrementally, by first developing and testing an autonomous essential modAl component,

drawing model component, machine-independent Ada graphics support environment, and graphi-

cal user interface. The thesis-ends by describing how these components can be used by follow-on

research to build the completed SAtoolII software.

xv

AN ADA-BASED FRAMEWORK FOR AN IDEFo CASE

TOOL USING THE X WINDOW SYSTEM

L Introduction

1.1 Background

Software requirements analysis, the first stage in the software lifecycle, is time-intensive and

often misunderstood (32:54). As a solution to these problems, various graduate students at the Air

-Force Institute of Technology (AFIT) have worked over the past six years in developing a com)uter-

aided requirements analysis tool. This tool, a user-friendly graphics-oriented computer program,

has evolved in six years into a software product called SAtool. The symbolic methodology used by

SAtool for software requirements analysis is called ICAM-Definition Method Zero, or IDEFO (1:1).

ICAM is the acronym for the Air Force's Integrated Computer Aided Manufacturing program.

The evolution process for SAtool began in 1984 when Thomas completed thesis work on an

interactive computer program to generate data dictionaries (34:1). This tool ran on a VAX 11/780

minicomputer and supported SADT, data flow diagrams, structure charts, and computcr svurce

code. In 1986 Foley continued this work and designed a data dictionary editor called DDEDIT that

ran on a Zenith Z-100 microcomputer (10:1). Also in 1986 Ursclieler combined the design of thc data

dictionary editor with graphical requirements analysis to create a computer program. Thib progrlin,

called the Requirements Analysis Tool with a Data Dictionary (RADD), served as a prototype -for

SAtool. Written in C and implementing only a subset of the SADT symbols, RADD ran on a

Sun Microsystems computer workstation and used the Sun graphics and windowing sysf em (36.1).

In 1987 Johnson extended RADD to-include all the symbols included in the IDEF0 methodology.

lie also added extensively to the program's data structures and increased the program's abilitV to

derive data dictionary information from an IDEFo diagram. His data structure additions adapted

1-1

the program's files to the standard interface database format developed concurrently in the research

by Connally (6:1). Written in C and using the Sun graphics features, Johnson gave the name SAtool

to this combined graphics editor and data dictionary program (18:1).

Two years following the completion of SAtool, a team of graduate students at AFIT put

together an approach to IDEFO based on an entity-relationship model (1:2). This approach broke

down IDEFO into an essential model and a drawing model. The essential model involved those parts

of IDEFO that represented the semantics of the language and included such things as activities and

data elements. The drawing data model comprised the graphical constructs used to represent the

particular IDEFo analysis such as boxes and line segments. One member of this team, Smith,

applied one of these models to the structure of SAtool (31:2-7). -Using object-oriented design and

the Ada language, Smith developed subprogram modules that implemented the essential model for

SAtool. These modules operated separately from the actual SAtool program. Smith also laid the

groundwork to convert-the user interface of SAtool to the X Window System (31:6-2).

1.2 Problem

SAtool has fulfilled many of its expectations over the past two years, but users and researchers

at AFIT have suggested several necessary changes to the program (10:5-12). The team developing

the essential model and drawing model of IDEF 0 identified the need to change the program to

conform to a more object-oriented design (1:1). Regular users of SAtool pointed out the reliance

of SAtool on the windows and graphics of the Sun workstation and the need to convert the user

interface to the device-independent X Window System. Shortcomings in the friendliness of the user

interface, in the ability to modify already-existing diagrams, and in the creation of a comprehcnsive

datta dictionary, encouraged both users and researhers to rmeonuinid wui UIpgdLk uf t k u,,iiu

program (18:5-12). The purpose of this research was not only to make these necessary changes to

SAtool, but also to develop an Ada-based framework for SAtoolII using the X Window System.

1-2

This re-engineering of SAtool into a production-quality program resulted in the implementation of

the graphical user interface and IDEFo drawing data model components of SAtoollI.

1.3 Summary of Current Knowledge

Two of the main changes suggested by the users of SAtool were to convert the user interface

and graphics to the X Window System and to redesign SAtool based on an essential model and

a drawing model. The first section below summarizes the current information on the X Window

System, or X. The section gives a brief history of X, describes the client/server model, and expla'ns

the mechanism versus policy issue of the X Window System. The second section highlights the use

of object-oriented data modeling techniques and graphical user interfaces.

1.3.1 The X Window System The X Window System is a device-independent network-based

display management system. It implements the desktop metaphor used today in many graphical

display computers (21:30). The X Window System has a very alphabetical lineage (29.80). The

family originated at Stanford University as the VGTS, or V system, a primitive networked graphics

windowing system. Then Digital Electronic Corporation desired a more advanced version of V

and worked with Stanford University to develop W. Because of the needs of a networking and

windowing project sponsored by IBM at the Massachusetts Institute of Technology, MIT acquired

the W system and greatly improved its networking capabilities. The MIT programmers dubbed

the improved W window system as X and have made the software available free to anyone who

wants a copy (21:30).

X is based on the client/server model (26:354). This model makes it possible for X to operate

independently of computer hardware. The server program runs on the user's computer and performs

the actual window allocation and drawing tasks requested by the client program. The client, by

definition, is an application program that can run either on the user's computcr or on a computer

connected to the user's machine by a network (26:354).

1-3

X provides the mechanisms for implementing windows but dictates no type of windowing

policy (26:357). This type of operation contrasts with that offered by Apple's Macintosh or Mi-

crosoft Windows. These software products require an application program to adhere to a particular

interface style.

This section has summarized the development of the X Window System. Because of its easy

availability, the absence of window policy, and the network-based client/server model, X has become

a well-known window product. It is also one of the most popular choices in window interfaces for

new software. By using X, the software is no longer bound to a specific graphical display or type

of computer.

1.3.2 Object-Oriented Data Modeling Object-oriented programming evolved in the 1960's

because of the need for simple, more understandable computer programs (37:2454). This method

of programming attempts to design a computer program based on objects in the real world and

operations belonging to those objects. An object is self-contained and has a state that is changed

only by specific operations defined on it (35:231). This concept of object-oriented programming has

given birth to subprogram modules that software designers can reuse from one application to the

next. The United States Department of Defense had this g, I in mind when it required reusability

as a key feature of software written in the Ada programming language (37:245).

Because of the ability of object-oriented programming to model the real world, programmers

over the last few years have applied this technique to the modeling of graphical data (28.27). In

the modeling of solid geometry, researchers have designed software systems that allow a user to

store objects in a data base fashion. Programs then change the objects' properties or query the

objects about their various properties or state (28:26). At the heart of the data base approach to

object-oriented data modeling is the designation of constructs, or objects, and the identification of

attributes that relate the constructs. Procedures, many times called methods, are then associated

with each construct. This data base approach to object-oriented data modeling has greatly increa5sed

1-4

the flexibility and understandability of graphics animation and rendering programs. In addition, it

has allowed the easy integration of geometric with nongeometric data. (28:27).

1.3.3 Graphical User Interfaces Programmers have also applied the techniques of object-

oriented programming to data modeling for graphical user interfaces. The growing demand for

user-friendly, easily maintained, interactive software has led designers to turn to object-oriented

techniques. The use of these techniques has increased the reusability and encapsulation of software

and decreased the time needed for rapid prototyping. In addition, it has encouraged the iterative

development of the components of a user interface (7:255).

1.4 Assumptions

The following assumptions prevailed throughout this research"

1. Johnson's work in implementing SADT symbols in SAtool was complete with respect to those

symbols which could be graphically implemented (18).

2. Smith's Ada subprograms implementing the essential data model for SAtool were correct and

complete (31).

3. The Ada interface source code supplied by Science Applications International Corporation

(SAIC) works correctly and completely when used for calling X Window library functions

from an Ada program (15).

4. The functions implemented in the X Window programming library perform as described in

the X Window documentation (25).

1.5 Scope

This research concentrated specifically on the graphics and drawing modeling changes to

SAtool and their relationship to Ada and the X Window System. It did not include the estential

1-5

model implementation done by Kitchen in concurrent research at AFIT (20:1-1), although it did

incorporate his Ada source code for the essential model into the drawing data model testing and

demonstration software.

1.6 Standards

The program source code documentation used throughout the development of SAtoollI com-

plies with the guidelines and standards written for AFIT by Dr. Thomas Hartrum (13:1). The

actual Ada coding practices used were object-oriented design, loosely-coupled packages, consistent

indentation, and consistent naming of packages, procedures, functions, and variable names. The

application -of the use clause for package names was avoided whenever possible to allow easier

program- maintenance.

1.7 Approach

The six-phase research effort to develop an SAtoolIl graphical user interface and all IDEFO

drawing data model implementation consisted of:

1. research into the X Window System, object-oriented data modeling, and graphical user in-

terfaces.

2. rectification of the problems encountered by other AFIT students when using Ada with the

X Window System.

3. revision-of the essential and drawing models developed in earlier research at AFIT.

4. object-oriented design of SAtoolII based on the essential and drawing models along with the

concepts of object-oriented data modeling, and graphical user interfaces.

5. incremental implementation and testing of the graphical user interface and IDEF0 drawing

data model components of SAtoollI.

1-6

6. partial integration of the SAtoollI graphical user interface, the IDEF0 essential data model,

and the IDEF0 drawing data model source code into a text mode demonstration driver pro-

gram.

In the first phase, information was collected from a variety of library sources, bookstores, and

personal computer magazines.

In the second phase, the compiling, linking, and execution problems that Smith had encoun-

tered with the SAIC Ada interface code to the X Window System were remedied (31:6-3) (15:1).

Most of these problems involved the pragma interface syntax in Ada and the method of linking

the X-Window libraries with an-Ada application program. The pragma interface statement in Ada

allows an Ada program to use non-Ada computer code. Refer to Appendix A for more information.

In the third phase, work-in cooperation with Kitchen was done to meticulously review and

revise the essential and drawing data models to ensure that all aspects of IDEFo were represented

in the models (20).

In the fourth phase, more work was done with Kitchen in using an object-oriented approach to

convert entity-relationship models of asystem into actual Ada source code. Kitchen concentrated on

the essential model while this reseach effort concentrated on the drawing model. In this phase this

reseach effort also designed a machine-independent graphics support environment to providc Ada

programs with the ability to utilize graphical routines and windows while shielding the programs

from the intricacies and subtleties of window systems. The major impetus for the design of the

graphical environment was the numerous details involved-in using the X Window System and the

SAIC Ada bindings to X.

In the fiftlh phase, this research effort implemented the drawing model entities, attributeb, iiod

relationships, while Kitchen did the same for the essential model. Both implementations iwnclvcd

the development of driver programs to separately test the models. Along with the drawing model,

1-7

this research effort also implemented and separately tested the machine-independent Ada graphical

support environment (MAGSE) and the graphical user interface for SAtoollI.

In the sixth phase, the essential model and drawing model were partially integrated along

with a text mode derivative of the SAtoollI graphical user interface to form a demonstration driver

program. This demonstration driver program concentrated on the box-activity relationship and

the IDEFo project hierarchy of diagrams.

1.8 Equipment and Software

The following computer equipment and software were used during this research:

* Sun= Microsystems Sun 3/110 workstation and AT clone personal computer

* DEC MicroVAX 3 minicomputer

* BSD UNIX operating system (version 4) and MS-DOS 3.3

e Verdix Ada compiler (version 5) and Janus Ada-(version 2)

* SAIC source code modules for the Ada interface to X

* X Window System library (version 11, release 4)

The drawing data model implementation and the graphical user interface were written com-

pletely in Ada. The Ada graphical support environment (MAGSE) used by the graphical user

interface was coded in Ada, with function calls made to-the X Window System library by way of

the Ada bindings developed by SAIC (15). Refer to Appendix D for configuration information for

SAtoollI.

1.9 Sequence of Presentation

This thesis contains six chapters. Chapter I is an introduction to the thesis. Chapter II

presents a-literature review on the X Window System, object-oriented data modeling, and graphical

1-8

user interfaces. Chapter III goes into the design specification for SAtoollI. It describes the revision of

the essential model and drawing model. It also details the object-oriented design of tle two models,

the Ada graphical support environment, the SAtoolIl graphical user interfa • and the integrated

design approach to SAtoollI. Chapter IV covers the incremental implementation of the essential

and drawing models, the graphical support environment, and the SAtoolII graphical user interfa'.

It also describes how the remaining components of SAtoollI can be developed and integrated to

form the complete SAtoollI software. Chapter V reviews the testing and evaluation for SAtc o1Il.

Chapter VI presents a summary of the thesis along with conclusions and recommendations.

1-9

II. Literature Review

2.1 Introduction

2.1.1 The Need for Concise Information Many articles and advertisements today for com-

puter programs talk about specialized window systems, object-oriented data modeling techniques,

and graphical user interfaces. These programs more often than not are designed based on their own

methodologies, ohus contributing to the lack of understandability and portability of major software

packages today. Software users and developers need concise information on how to effectively select

and use object-oriented data modeling techniques, window systems, and graphical user interfaces.

This literature review does just that by providing information on research and work done in each

of these areas. First, this- review covers the device-independent X Window System, developed

by the Massachusetts Institute of Technology (MIT). Then, it describes some well-grounded ob-

ject oriented data modeling- techniques. Last of all, -it- presents advice on designing graphical user

interfaces.

2.2 The X Window System

2.2.1 What is a Window System? To understand better the X Window System described

in this review, the reader should first understand what a window system is, and in broader terms,

what a display management -system is. Stuart Lewin of Sanders Associates, Inc. provides the

following definition:

A display management system (of which the X Window System is an example) is anal-
ogous to the operating system of a general purpose computer. Display management
systems provide a centralized mechanism o .-the sharing of resources between poten-
tially competing users. In much the same way that the operating system manages access
to processor cycles, peripheral devices and file-systems, the display manager manages
screen space, colors, fonts, cursors, and any input devices attached to a workstation.
(21:30)

2-1

2.2.2 The Origin of the X Window System Most discussions of the X Window System in

the literature explain where X came from. Each credits the Computer Science department at the

Massachusetts Institute of Technology (MIT) as the main developer and maintainer of X; however,

all article written by Robert Scheifler of MIT and Jim Gettys of Digital Equipment Corporation

describes more of the details. They point out that X evolved first from 'V' and then from 'W': "the

name X derives from the lineage of the system. At Stanford University, Paul Asente and Brian Reid

had begun work on the W window-system as an alternative to VGTS for the V system (29:80)."

The writers then explain how the W window system made its way to MIT and became X:

We acquired a UNIX-based version of W . . . produced by Asente and Chris Kent
at Digital's Western Research Laboratory. From just a few days of experimentation,
it-was clear that a network-transparent hierarchical window system was desirable, but
that restricting the system to any fixed set of application-specific modes was completely
inadequate. It was also clear -that, although synchronous communication was perhaps
acceptable in the V system, it was completely inadequate in most other operating
environments. X is our reaction to W. (29:80)

Why did MIT want a device-independent window system in the first place? The answer is

simply in the portability issue. A large computer science project at MIT, called Project Athena,

centered on the development of special graphical displays. For this project the programmers needed

a way to run their software easily on many different types of computers (29:80).

2.2.3 Why Change To X? Readers accustomed to their own window system may ask "even

though MIT had reasons to change to X, why should I spend time and effort on this new system?"

IBM answers that question in its Advanced Interactive Executive (AIX) advertising brochure:

X's popularity starts with the fact that it is in the public domain, and thus available
for all vendors to use and develop in their own way. Also important is the fact that
X represents an important breakthrough in distributed- computing (commonly referred
to as "networking"). X is particularly useful in environments where PCs, workstations,
and minicomputers from different vendors need to run the same application. (16:53)

2-2

2.2.4 The Client/Server Model and Distributed Computing The client/server model of X is

the basis for the distributed computing written-about in IBM's AIX brochure. This model makes

it possible for X to operate independently of a specific computer hardware (26:354). The server

program runs on the user's computer and performs the actual window allocation and drawing tasks

requested by the client program. The client program, by definition, is an application program that

can run either on the user's computer or on a computer connected to the user's machine by a

network (26:354). In simple terms, the client program describes a picture to draw and the server

program draws the picture on the user's computer display.

A skeptic reading about the distributed computing approach might comment first on decreased

performance, that is, the increased execution time as the user sets it. Scheifler and Gettys confront

that issue in their article:

The performance of existing X implementations is comparable to that of contemporary
window systems and, in general, is limited -by display hardware rather than network
communication. For example, 19,500 characters per second and 3500 short vectors
per second are possible on-Digital Equipment Corporation's VAXStation-II/GPX, both
locally and over a local-area network, and these figures are very close to the limits of
the display hardware. (26:80)

2.2.5 Mechanism But Not Policy Along with good performance, X :lso provides mecha-

nisms for implementing windows but dictates no type of window policy (26:357). A client program

issues suggestions or hints on window position and size, but the server program has the final say on

the actual window dimensions and its exact location. This type of operation contrasts with that of-

fered by Apple's MacIntosh or Microsoft Windows. These software products require an application

program to adhere to a particular interface style (38:2).

A by-product of mechanism over policy is the development of many window managers for X.

A window manager runs on the user's computer and controls such things as how the various foitts

appear in certain windows and how programs can communicate with differcnt peripheral devices.

A window manager may make up part of an operating system. It also may exist as a separate

2-3

computer program (24:65). These window managers provide the interface between the user and X.

Each of the managers implements the window policy preferred for that computer without having

any effect on the operation of the application program (21:31)).

2.2.6 X Out On The Road Because of its mechanisms, X has proved its worth in emulating

other window systems. X Window System managers now exist that appear to the user as a Mac-

intosh or Microsoft Windows display. X window managers that emulate the OS/2 Presentation

Manager are now in development by software companies (26:357).

X has also shown that it can handle multiple windows with ease. Douglas Young describes an

X Window System environment in which an interactive computer training program (an X Window

client) executes on the school's main computer. In a classroom each student has a personal computer

with an X Window manager on his desk. Each- computer display has a window for the computer

training program and possibly one for checking electronic mail. On the instructor's desk is a single

computer monitor showing-each student's screen-display (21:2-3).

2.2.7 Conclusion This literature review has introduced the reader to the X Window System.

It told of the origin of X and how computer scientists at MIT developed -the X Window System to

fill a distributed-computing need. The review also-explained the client/server model of X and how

this window system approach supplies mechanism rather than policy.

2.3 Object-Oriented Data Modeling

2.3.1 The Need for Object-Oriented Data Modeling Most programmers are familiar with

functional-oriented modeling. The FORTRAN programming language and the IIIPO charts of

COBOL are good examples. In working with this method of modeling, these same programmers

will tell you about problems in building large, complex systems. Shlaer and Me.lor point out the

2-4

consequences of problems that occur when relying on a functional-oriented design of large systems

(30:4-5):

" Floundering in Analysis. The analysts try to take everything hito-account.

* Requirements Failure. A requirements document is produced but no one knows enough about

the whole system to spot the incompleteness or inconsistencies in it.

" Premature Rush to Implementation. The designers shrug off understanding and just precede

in trying to design and implement it.

" Faults and Inconsistencies. After classifying certain program modules as independent of

one another, they are many times developed by a number of programmers. The concept of

independence between modules is then falsely extended to the data the modules deal with.

" Unintelligent System. The system is designed with no notion of the differences and relation-

ships between each of its parts.

An answer to the causes of these consequences is object-oriented data modeling through the

use of information models.

2.3.2 Objects, Attributes, and Relationships An informational model is based on the real

world and is made up of objects (or entities), attributes of objects, and relationships between objcLtb

(30:6-13). In determining attributes, the designer should strive to have them capture all pertinent

-information, f. :ist uniquely from other attributes of an object, and take on values independent of

the other object attributes (30:26). Attributes fall into three categories : descriptive, naming, and

referential. (30:29-32). Descriptive attributes and naming attributes have to do with only the

object itself, but referential attributes deal with the relationships between objects.

Referential attributes provide the mechanism that tie two or more objects together in a

relationship. These relationships can be 1-to-1, 1-to-many, or many-to-many. A 1-to-1 relationship

2-5

is modeled by adding a key field attribute in one object that uniquely identifies the object it is

related to (30:52). A 1-to-many relationship is modeled similarly by placing a key fieid attribute

in the many object that uniquely identifies the 1 object.

Modeling the many-to-many relationship is more involved than the methods described above.

The key field attributes are placed in a structure separate from any of the objects composing the

many-to-many relationship. This structure is referred to as a correlation table if it contains only

corresponding key field attributes (30:58), and an associative object if it also has distinct att.iutps

of its own (30:69).

2.3.3 Data Model Implementation : The KCeyslone Methodology Object-oriented date Mod-

eling, also referred to as entity-relationship (E-R) modeling, does not provide for systeu imple-

mentation. This step is left up to the programmers and analysts. Eric Kicm served as part of a

programming team that implemented a system using E-R modeling. According to Kiem, his E-71

implementation methodology, called the Keystone Methodology:

uses Entity-Relationship modeling to determine an optimum object-oriented packaging
structure, which will exhibit minimum coupling and interdependencies between elements
of a system and therefore maximum reusability potential. Furthermore, the resulting
organization of the data dimension permits extensive use of a limited range of generics
to provide complete data manipulation through the use of relational operations. The
form and disposition of concurrent elements of a system can also be determined directly
from the E-R model. The modeling process is proven and the implementation of the
resulting design is systematic (19:101).

Kiem points out that as relationships are formed by associating entity key values, a relation

ship itself can become an object (19:102). This corresponds to the Shlaer and Mellor correlation

table or associative object used to model many-to-many relationships. Kiem also states that E-R

modeling of asystem followed by the Keystone Methodology of design results in "ninimum coupling

and maximum reusability of all entities." (19:105)

2-6

*9

2.3.4 Conclusion Object-oriented data modeling overcomes the problems associated with

the functional modeling of large software systems. In data modeling, analysts completely identify

all objects, attributes, and relationships in a system. This modeling technique takes into account

all the data in the system, the objects that use that data, and the relationships between those

objects. Depending on the type of relationship, each can be modeled as either a key field attribute

of an object or as an entry in a correlation table or associative object. The Keystone Methodology

provides one proven way- of going from system model to actual implementation.

2.4 Graphical User Interfaces

2.4.1 Why A Graphical User Interface?- A graphical user interface (GUI) employs -multiple

windows, menus, icons, and a mouse to make communicating with a computer more productive

and less frustrating. This is based on research done by Microsoft Corporation and Zenith Data

Systems Corporation (22:91). A GUI frees the user from burdensome manual reading or command

memorization. An example of a GUI is the X Window System described earlier in this literature

review. Because of the client/server model and network communication ability, the X Window

System is more sophisticated than other GUIs (22:91).

2.4.2 An Object-Oriented Approach to a Graphical User Interfacc The object-oriented mod-

eling described already in this literature review can be effectively applied to GUIs. An example

is the Graphical Object Workbench (GROW) system developed by Paul Barth. In the design of

GROW, Barth used three techniques (2:142):

* Object-based graphics based on a taxonomic hierarchy and utilizing inheritance

* Inter-object relationships which allow the composition of several objects into imore complex

objects which then have interdependencies

2-7

* Separation of interface and application to simplify the modification and-reuse of the interface

for other applications

Barth relates his graphical objects together through the use of taxonomic inheritance, com-

position, and graphical dependency (2:148). Taxonomic inheritance involves each kernel (the most

general) graphical object in the system having attributes and methods (functions) used for graphi-

cal interaction and for displaying and moving the object. Other objects below these kernel objects

either inherit these kernel attributes and methods or override them with their own (2:149). Com-

position allows objects to be grouped into complex objects which are then treated as if each were a

single object itself. The objects are linked together by key fields called slots (2:150-151). Graphical

dependency between objects-ensures that when an attribute is changed, the dependent attributes

are also changed. It is implemented as an attribute in an object. The attribute consists of a list of

other attributes on which the object depends (2:152).

Barth sets a definite barrier between the interface and the application to reduce the complexity

of interface reuse. This barrier does not permit the application to access GROW's internal data

structures; all communication occurs through the use of keys that are passed to an application by

GROW and uniquely identify a graphical object (2:156-157). This is analogous to the client/server

model in the X Window System.

In creating the GROW interface, Barth followed four steps (2:159-163):

1. Create graphical objects to be used in the interface and define their composite structures.

This involves the -creation of a class object for each type of object.

2. Establish graphical dependencies. This involves linking objects through dependency at-

tributes.

3. Make changes or extensions to the methods and attributes provided by the system. This

involves specializing a method or an attribute to a object instance.

2-8

4. Link the interface and application. This involves setting up calls from the GROW interface to

the application, and from the application back to GROW. The calls are mainly menu-driven.

The GROW interface developed by Barth brought out many important aspects of graphical

user interface-design. First, the three basic object relationships are essential to the versatility and

power of the system. Second, dependencies should be defined between object attributes rather

than the actual objects. Finally, separation between the interface and the application permits the

interface to be used for a variety of different application needs.

An application that borrowed extensively from Barth's work with GROW is described by

Paolo Sabella and Ingrid Carlbom. They incorporate object-oriented data modeling with its

attributes, -relationships, and inheritance -into-a-system that manipulates solid geometric shapes

(28:24).

24.3- Graphical User Interface Consistency- A review of GUIs should-not close without a

discussion of consistency issues, especially with- all the various graphical user -interfaces available

today. Jonathan Grudin argues "for a shift in-perspective" because "when user-interface consistency

becomes our primary concern, our attention -is directed away from its proper focus: users and their

work." (11:1164)

Grudin lists three types of user interface consistencies:

* Internal consistency of an interface design. This receives the most attention by designers.

* External consistency of interface features with features of other interfaces familiar to the

users. The big issue here is not having to-retrain the users.

i Correspondence of interface features to familiar features of the world beyond- computing. Thib

involves-the appearance on the screen of objects or devices that the user sees in his work area

every day.

2-9

His study of user interface consistency brought out that "consistency that supports ease

of learning can conflict with ease of -use." (11:1167) Two items to consider in this area are tile

positioning of default menu selections and the abbreviations of commands or operation names

(11:1169). Grudin concludes by stating that designers should strive for a user interface that tends

more towards matching the user's work environment than being consistent. They should not let the

user interface be driven by the underlying system architecture. In addition, the designers should

recognize that a fully consistent system is not feasible (11:1170-1172).

2.5 Summary

Software users and developers need information on the use of window systems, object-oriented

data modeling, and graphical user interfaces. This literature review has briefly covered all three

of these areas and has given examples of their use. The next chapter in this thesis shows how

information presented in this review was used in designing the machine-independent Ada graphical

support environment, the SAtoolIlI drawing model, and the SAtoollI graphical user interface.

2-10

III. SAtoollI Design

3.1 Introduction

This chapter takes the reader through the design specification phase of SAtoolII. It starts off

with the next section summarizing the SAtool1I predecessor program called SAtool and showing

how information was drawn from experiences with SAtool to improve the design of SAtoolIl. The

third section retells the history of the essential and drawing models initially designed to model

IDEFO, while the fourth section explains the changes that were made to those models as a result

of reexamination in this and Kitchen's research. The fifth and sixth sections describe the object-

oriented design of the machine-independent Ada graphical support environment and the SAtoolil-

graphical user interface. The seventh section goes into the design of complex drawing objects needed

in IDEF0 diagrams, while the eighth section tells how these-diagrams are then saved in project files.

The ninth section describes an error handling design to centrally deal with all runtime errors that

occur during the execution of SAtoolII and the tenth- section explains why a special component

is needed in the design for macro operations and project integrity constraint management. The

eleventh section illustrates how each of the component parts of SAtoollI fit together in an integrated

SAtoolHI design specification.

3.2 SAtool in C

3.2.1 SAtool Design and Implementation The predecessor computer program for SAtoollI,

called SAtool, was developed by Johnson as part of a thesis research project at AFIT in 1987

(18:1-1-1-11). He wrote the program in the C programming language and used functions calls

to the Sun Microsystems SunView window and graphics libraries to implement his graphical user

interface and drawing routines (33) (18:4-1-4-2). In designing and implemeating SAtool, lie used

a top-down approach that involved first putting together the menus in the user interface and then

implementing each of the functions identified in the menus. By selecting the proper menu items,

3-1

and designating location points and text, a user could create, store, and reload a single IDEFo

diagram (18:4-18). The structure charts in Johnson's thesis document this functional approach to

the overall operation of SAtool (18:G-1-G-18).

In designing the primary data structures, Johnson took an object-oriented approach and used

the following design objectives (18:4-10):

* The- data structures must maintain both graphics and data dictionary information.

* The data structures must separate the data dictionary information from the graphics infor-

mation as much as possible.

9 The- data structures must maintain enough information to allow -the grapnics and data dic-

tionary- information to be stored in- separate files and later restored from those files.

Johnson's primary data structures consisted of a box, line, squiggle, header, and footnote.

These data structures made it possible-to create, save, and load both graphical and data dictionary

information. However, as Johnson pointed out, SAtool could not consistently resolve the source

and destination fields for a data dictionary entry from just the graphical information stored in the

data structures (18:4-15). Along with the-primary data structures, Johnson identified the following

five graphical entities: activity box, ICOM line, squiggle line, diagram label, and footnote marker

(18:5-12).

Johnson set up SAtool to create four types of data files, all in an ASCII format. The data

file types are (18:4-16-4-17):

* A file with a .gph extension to store the diagram graphics information

* A file with a .dbs extension to store database information that followed the guidelines deter-

mined by Connally in (6)

* A file with a .fpt extension to store facing page text information to accompany an IDEFO

diagram

3-2

* A file with a .dd extension- to store a formatted -iersion of all or parts of the contents of tl"

.dbs file

To generate a copy of a completed IDEF0 diagram, Johnson used the window capturing

feature of the Sun workstation. This feature places the image contained in a Sun window into a

file. The user can then send the file to a laser printer which produces a copy of the window contents

on paper (18:4-17).

3.2.2 Suggested Changes -to SAtool Alter implementing SAtool, a group of AFIT students

evaluated the program's performance (18:5-8-5-9). This group gave the following suggestions (18:5-

11-5-12):

* Improve the user documentation and give examples instead of making the user learn by trial

and error

9 Add a help selection to each of the menus

" -Implement an UNDO command for each menu selection

Johnson also gave some recommendations for improvements to SAtool (18:6-2-6-4):

* Integrate the use of voice output by the software

• Change the diagram printing capability from a simple time-intensive pixel dump to a file of

line and text drawing commands

* Improve the simple editing features of data dictionary input

* Provide on-line help

* Convert the user interface and graphics from Sun View to a standard graphics package such

as GKS

" -Enhance the software to handle an entire project instead ofjust one diagram at a time

3-3

* Design the software to create a diagram solely from the contents of a data dictionary

" Add color to the interface

" Redo the software in Ada

Students in the software engineering classes at AFIT have used SAtool since its creation in

1987. This period of usage has produced other recommended changes to SAtool (14:1-27):

" Have the lines and arrows connected to box automatically move when the box is moved

" Have the software automatically space lines evenly on the side of a box

" Reduce the number of menu choices needed to perform drawing tasks

" Make the software more sensitive to drawing changes

" Explain more clearly the user errors when they are made

" Automatically save the data dictionary information when the diagram is saved

" Include a tutorial and examples in the documentation

" Provide drawing and manipulation operations specifically useful for IDEFr diagrams rather

than duplicating the features commonly available in any paint program

" Improve tile user confidence in the system by providing more feedback and by gracefully

handling user and program runtime errors

" Make the text in the diagrams easier to read

" Make the software more useful as an IDEF0 creation and modifying tool rather than as just

a means of fancying up a design already done on paper

" Make the menu choices and prompts duplicate the process followed in creating and modifying

an IDEF0 diagram on paper

* Create a version of the software to run on a PC or at least allow viewing and printing

capabilities other than those on a Sun workstation

3-4

3.2.3 Some Final Thoughts on SAtool Johnson methodically approached the designed and

implementation of SAtool. Although he based his primary data structures on an object-oricted

dcsign, his overall program flow and control in SAtool were purely functional. In short, the driving

force behind the development of SAtool appears to have been the desired menu functions and the

drawing, saving, reloading of a graphical diagram. The ability to subsequently build a data dictio-

nary from the created drawing seems to have only been a by-product or secondary consideration

of the SAtool design.

Johnson's SAtool laid the groundwork for the formulation of the essential model and drawing

model and for the design and development of SAtoolII. His overall design, although functional,

provided helpful information used later in drawing and manipulating the SAtoollI diagrams. The

remaining sections in this chapter incorporate into the design of SAtoollI both Johnson's work and

the items in the lists of recommended changes.

3.3 Original Essential and Drawing Models

3.3.1 The Original Essential and Drawing Models for IDEFo In 1989, students doing re-

search work at AFIT created an entity-relationship or E-R model of the IDEF0 language (1:1).

They separated the model into an activity essential data model shown in Figure 3.1, a data cle-

ment essential data model shown in Figure 3.2, an acitivity drawing data model shown in Figure 3.3,

and a data element drawing data model shown in Figure 3.4 (1:3-4). According to Smith,

.thie essential data was defined to be all thle data required to compile data dictionary

entries for the activities and data elements. The drawing data was defined to be any
data which was not essential. The drawing data mainly consisted of data depicting the
graphical layout of the diagrams and supporting text such as footnotes. Efforts were
made to prevent the storage of a single datum as essential data and drawing data As
a result of our efforts, four separate ER diugrams were developed." (31:4-1-4-2)

The entities, attributes, and relationships used in these mcdels were primarily identified from

a review of .Johnson's SAtool design and implementation (18), the structured analysis article by

3-5

Ross (27), and the IDEFo manual (23). The amalgamation of these models with the details of

IDEFO and the operation of SAtool appear in a technical report by Hartrum (12).

3.3.2 Initial Implementation of the Essential Model As a first step in developing the next

version of SAtool, Smith set out to implement the essential model part of the entity-relationship

model for IDEF0 by using it as a basis for an Ada implementation of SAtoollI (12:88). Ile ended

up developing what he ca!led an IDEF0 Syntax Data Manipulator. The data manipulator allowed

the user to create, modify, link together, and delete activities and data elements. It also loaded and

stored data dictionary information (31:6-1-6-3). Therefore, what remained for the future was an

implementation of the drawing model and an improved user interface. This implementation would

then be combined with Smith's essential model implementation to form SAtoolIl (12:88).

3.4 Revised Essential and Drawing Models

3.4.1 Review and Revision of the ,DEFo Models Meeting first in January of 1990 and inter-

mittently through July, this research effort set out in conjunction with Kitchen's work to review and

possibly revise the essential model and drawing model diagrams. Kitchen reviewed the essential

model and Smith's work with it, while this research effort analyzed the drawing model and how it

related to Johnson's SAtool work and IDEFo.

3.4.2 Changes to the Essential Model Kitchen found the existing design and implementa-

tion of the essential model to be inconsistent and inadequate, and suggested many changes (20).

lie removed the analyzes relationship and analyst entity from both the data and activity modcl

diagrams and moved the attributes up to the activity entity and data element entity. lie also com-

pletely did away with the alias entity. In addition, lie redesigned the consists of relationship which

was connected to the data element entity. The resulting revised essential model diagrams appcal

in Figure 3.5 and in Figure 3.6. This essential model description served as the design specification

for the essential model component of SAtoollI (20).

3-6

controlled

dta

elemen actiitydodfnned

.......... se....e

Fire 3.1 Orgia 0DEm ATVYEseiaDaaMdescito

mecha3iz

..................
project 1:rn refpart of

description

name
O:n inputs :1111 0-n

data 1:m
based on

element

O:n outputs

I:M

ISA data type

...... O:n is m

controlled atomic
b minimum

activity data item

...........

:n is 0:M 2:m
mechanize ran e

..................
O:m

consists of :m
Ianalyst .1 analyzes

................... '17 1 0:1 can have

changes

date has an O:n

pipe

version O:m

values

commentdefined

elsewhere name
................... where use

Figure 3.2. Original IDEFO DATA ELEMENT Essential Data Model

3-8

x -y

..................

visible DRE
activity box

represente
by

.......... I

I:m

drawn on
c-number

is 0:
decomposed sheet I cont, ins

on

note

x

YI squiggle

x2

is
y2

contents v4

.................. y3 x4

text FEOdefined

elsewhere

.................. IS footnote

Ci:

Figure 3.3. Original IDEFO ACTIVITY Drawing Data Model

3-9

..................

.se.....

O~on

end

.. ty p eh

Figre3.4 OigialID~o AT ELMET rawngDat Mde

3-10n

project

O:m inputs :n I part of 1:m

1:rn outputs O:n 0: composed O:m

.. 1:rn is O:n *name
controlled

data
tivit mimbe--

element activity
...........

O:m is 0:
mechanize

b version
ctivit numbe

O:n calls 1:rn hnn

date

historical
activity

1:rn O:n author

based on

project

type
defined

ref
elsewhere

...................

Figure 3.5. Revised IDEFO ACTIVITY Essential Data Model

3-11

.................. author

date
project I:m

part of
................... description

I---
* name

O:n inputs :M

data data type

element minimum

0: outputs

I:m maximum

.. O:n is :m Oan consists of 2:m range

controlled
version

activity
ecomposition

........... chan es

:n is O:m
mechanize

b

can have

O:n
0:11

*Value

values ref

defined

elsewhere
...................

Figure 3.6. Revised IDEFO DATA ELEMENT Essential Data Model

3-12

3.4.3 Changes to the Drawing Model Upon reviewing the drawing model E-R diagrams for

IDEF0 , this research effort spotted ambiguities and conflicting concepts in the design. The separa-

tion of the drawing model into an activity model and a data element model seemed inappropriate

and almost forced upon by the design of the essential model. The drawing model actually con-

sisted, in part, of the graphical entities that Johnson had identified in his thesis (18:5-12). Also,

the corresponding drawing model entity for the essential model activity, the box, was really only

one of nine other entities in the drawing model. Therefore this research effort applied the principles

of object-oriented data modeling described by Shlaer and Mellor (30) and the graphical object

relationships identified by Barth (2:147-148) to create a completely revised drawing model. As in

the original drawing model, this drawing model uses entity, attribute, and relationship names and

definitions from the notational language that IDEFo is based on (27).

3.4.4 The Revised Drawing Model The revised drawing model is divided into three figures.

Figure 3.7 shows the drawing entity class and its subclass entities. Figure 3.8 shows all the entities

and their attributes. Figure 3.9 shows the entities and the relationships between them.

This revised model uses the entities and attributes described below. As illustrated in Fig-

nre 3.7, most of these entities are subclasses of the drawing entity. The exceptions to this are thc

note, footnote, and metanote entities which are subclasses of the verbal addition entity. Each of

the entities has both unique attributes and attributes of its superclass. In the case of the drawing

entity, this is the entity name and the entity's X and Y position on a diagram. In the case of a

verbal addition entity, this is the text or graphical contents.

* diagram - A diagram contains the decomposition of a box. Its unique attribute is a C-number,

or chronological creation number. The C-number is made up of an author's initials and an

integer. This notation refers to an existing diagram that will be hierarchically renumbered

when the project is completed (27:32).

3-13

**

" box - A box represents an activity on an IDEFo diagram. Its unique attribute is a DRE, or

detail reference expression. This includes such notation as C-number, page number, or SA

call (27:32).

* FEO - An FEO, or for exposition only, is a special effect feature placed in a diagram. It is

not part of a diagram, but is used to illustrate the purpose of a particular action taken on

the diagram. Its unique attribute is a picture acting as an embedded illustration (27:23).

* footnote - A footnote is the same as a note except that it can be used instead of crowding

in part of the diagram forces the text to be moved to another diagram location. Its unique

attribute is an X-Y marker which holds the location in a diagram of the number referring to

the footnote positioned eisewhere in the diagram.

* label - A label tells what specific information a line segment or an historical activity represents.

It is used in conjunction with a squiggle if the line segment it corresponds to is not obvious.

One of its unique attributes, the text attribute, contains the label characters. Its other unique

attribute is a boolean flag indicating if the label is used for a historical activity or a data

element.

" line segment - A line segment, in connection with other line segments and terminators, shows

the flow of data from one box to the next. This data is identified by a label related to the

line segment. One or more line segments connected to terminators are used to represent a

data element. A line segment has no unique attributes.

" metanote - A metanote is not part of the IDEFO description in a diagram. Instead it is

information about the diagram, such as the way it is laid out or the choice of label or box

names. It has no unique attributes.

• note - A note puts nongraphical analysis-related information into a diagram. If the object

that the note refers to is not obvious, a squiggle can be used to clarify the situation. A note

has no unique attributes.

3-14

* squiggle - A squiggle is a device used when crowding on part of a diagram causes poor

readability. It is used to relate a label to a line segment or a footnote marker to a line

segment when the label cannot be placed close enough to the object. A label has two unique

endpoint attributes, one near the label or footnote marker and one near the line segment.

" terminator - A terminator is a symbol that attaches to a connector. The other end of the

connector may be attached to a line segment, a box, or another terminator. A termin..

identifies where the data is going and possibly something about where it came from. The

terminator can have one of nine identifiers in its unique symbol attribute: arrow, boundary

arrow, tunnel arrow, to-all, from-all, simple turn, junctor, dot, or null (stands for no ter-

minator). A junctor is a three-way line segment intersection. Its unique direction attribute

contains more layout information about a terminator and its unique ICOM code attribute

contains a character string.

* connector - A connector is not an IDEF0 object, at least not a visible one. It allows the

drawing model to take the tinker toy approach in forming a diagram. It has no unique

attributes.

Figure 3.10 is an illustration of how the drawing model entities work together to form an

IDEFO diagram. The most prominent item in the figure is the connector stub. Although connector

stubs are not visible, they provide the ability to easily move related objects around on a diagram.

A single move of a connector stub can automatically relocate a number of other drawing objects.

The revised drawing model description contained in the drawing model figures served as the design

specification for the essential model component of SAtoolIl.

3.5 Machine-Independent Ada Graphical Support Environment (MA GSE)

3.5.1 Requirements Analysis for the MAGSE The machine-independent Ada graphical sup-

port environment or MAGSE should provide an interface between any window system and an Ada

3-15

drawable

object

is
a

exposition connlctor

only stub

verbal line

label squiggleaddition segment bxtriao

Figure 3.7. IDEFo Drawing Data Model (Glasses and Subclasses)

3-16

drawable

object

name

exposition I diagram

verbal line

addition squiggle label sgnt box terminator

noeconnector

note

Figure 3.8. IDEFo Drawing Data Model (Entities and Attributes)

3-17

dipogitio I I IIs
onlyactiityelemnt actvit

0:1

rdentifie i dertifis-b-i n represented

verbacaldaal

idnttacheetiie s attacesnttced

l~m 0 1 m

ner lsug l ieb xtr iao

froconnector

1 getstub

defined

Ielsewhere

Figure 3.9. IDEFo Drawing Data Model (Entities and Relationships)

3-18

box label

DATA -

L - - - squiggle

line boundary
segment arrow

arrow

Lo I

connector

stubs

(not visible)

Figure 3.10. IDEFO Drawing Data Model Illustration

3-19

application. The MAGSE should sit on top of a window system, shielding the application from it.

Why does Ada need a MAGSE like this? One reason is to contribute to the rather small amount

of window and graphical support research written for Ada. A second reason is the intricacies and

numerous subtle changes needed in an application when converting it from one kind of window

system to another. A third reason is the amount of detail involved in creating a window with its

many attributes and then performing event-checking on those windows. A fourth reason is the

reliance of an application on a specific window system to supply sophisticated windows such as

menus or dialog boxes. What makes the MAGSE machine-independent? The MAGSE is designed

to be machine-independent in as far as Ada and the underlying window system are independent.

3.5.2 The Object-Oriented Design Using the requirements analysis for the MAGSE, and

taking an object-oriented design approach, this reseach effort divided the MAGSE into seven classes.

The objects for these classes are L:.)wn in Figure 3.11. Each class contains one or more objects

plus methods (operations) for constructing or modifying those objects (4:75-83). The classes are.

* drawing primitive

" 2-D plane

" 2-D matrix stack

* 3-D pyramid

" 3-D matrix stack

* input device

" window manager

The drawing primitive class contains lines, rectangles, circles, and text strings. It also has

methods to draw and erase each of these primitives (9:25). One or more drawing primitives can bc

used to construct complex drawing objects.

3-20

input 2-D 2-D
device plane matrix

window

manager

3-D3-D matrix
pyramid stack

L EGEND

Object

Message
Passing

F igure 3.11. Machine-independent Ada Graphical Support Environment Design

3-21

The 2-D plane class-contains a two-dimensional plane. It also has methods to set the plane's

X and Y dimensions, and clip and render complex primitives in the plane (9:67).

The 2-D matrix stack class contains a stack for storing matrices which are used in performing

two-dimensional transformations. It also has methods to push a matrix on the stack, pop a matrix

off the stack, multiply another matrix times the matrix on the top of the stack, and perform

two-dimensicnal rotate, scale, and translate operations on the top matrix of the stack (9:201).

The 3-D pyramid class contains a three-dimensional perspective pyramid. It also has methods

to set the X, Y, and Z dimensions of the pyramid, set the viewing location and viewing perspective

of the pyramid, and clip and-render complex primitives in the pyramid (9:229).

The 3-D matrix stack- class contains a stack for storing matrices which- are used in performing

three-dimensional transformations. 'i also contains methods to push a-matrix on the stack, pop a

matrix off the stack, multiply another matrix times the matrix on the top of the stack, and perform

three-dimensional rotate, scale, and translate operations on the top matrix of the stack (9:213).

The input device class- contains a keyboard, a cursor and a 3-button mouse. It has methods

to read the keyboard input, get the cursor position, detect mouse movement, and detect which

mouse button was clicked (9:347) (25). It also has methods to detect when a window event occurs

with these windows (17:351).

The window manager class contains a window manager object. This-object has methods to

allocate and deallocate window storage and to retrieve a specific window from storage (9:439). It

allocates drawing windows, acknowledge windows, confirm windows, dialog windows, column menu

windows, sign windows, and text windows (9:358) (17:351). The class has additional methods to

create, display, hide, and-destroy these windows (25).

3.5.3 Separation of Graphical Support Environment and Application The design of the

MAGSE, as shown in Figure 3.11, is based on having the graphical support environment exist

3-22

completely separate from a specific application above it and a specific window system below it (2).

This prevents the need of any vendor-specific window system calls to be made-from anywhere in

an application. The description in Figure 3.11-served as the design specification -for the MAGSE.

The MAGSE design fills the gap for an easy-to-use window and graphical environment that

is portable, written in Ada, and therefore relatively independent of any specific window system

application. The catalyst for the creation of the MAGSE was the window and graphical require-

ments of SAtoolIl, but the MAGSE design allows other Ada applications to take advantage of tile

products and services it offers . Refer to Chapter 4 and Appendix B and C for more information

on the MAGSE.

3.6 Graphical User Interface

3.6.1 Requirements Analysis for the SAtoolII Graphical User Interface What functions are

needed in the graphical user interface for SAtoollI? Should it have everything- the user wants plus

anything the-designer thinks should be there? To answer these questions this-research effort first

involved reviewing the information on user-suggested changes to SAtool and the screen format that

Johnson had used (see the section on SAtool). Then, it involved pulling ideas from articles by

Barth (2), Myers (24), Sabella (28), and Grudin (11). Next, it involved reviewing the graphical

user interfaces and menu items of a number of interactive programs including CASE tools, word

processing programs, paint programs, desktop publishing programs, and circuit design software.

The material mainly looked for in these programs were the operations that the computer and

display could-do that the user did much slower or could not do at all. One example is a thumbnail

view of all diagrams in a project. Another is automatic rerouting of lines. A third is the ability to

store, search for, and recall any diagram by name only.

3-23

3.6.2 The Object. Oriented Design After reviewing numerous graphical user -interfaces and

collecting interface ideas, I started the design of the SAtoollI graphical user interface by identifying

the objects in the user interface. These objects and their-window contents are described below.

1. The main screen window objects for the user interface design are:

" Title window. This window identifies the software and its purpose.

" Help window. This-window displays a message describing the purpose and use of any

highlighted menu or sign.

" Main menu window. This window contains the-main menu button objects.

" Drawing window. This window is where the user creates and modifies an-IDEFo diagram.

It is also where various views of a project appear.

" Drawing Objects window. This window contains the drawing objects used in all IDEFO

diagram.

* Tools Window. This window supplies the user with the methods used- to set flags for

SAtoollI to know which tool function to use to create or modify a selected drawing

object.

2. The drawing objects for the user inteface are box, FEO, footnote, label, line segment, metan-

ote, note, squiggle, terminator, and connector. These objects are taken directly from the

drawing model design.

3. The main menu button objects for the user interface are:

* Project menu - This main menu button supplies a list of methods used on a whole IDEF0

project.

e Diagram menu - This main menu button supplies a list of methods used on an IDEFo

diagram.

3-24

9- Dictionary menu - This main menu button supplies a list of methods used on activity

and data element entries in a data dictionary.

* Taxi menu - This main menu button supplies a list of methods use to find a diagram if

it exists in the IDEF0 project and move it into the drawing window.

* View menu - This main menu button supplies a list of methods used to create different

views of the diagrams in an IDE~c project

* Options menu - This main menu button supplies a list of-methods used to change user-

defineable options referenced by SAtoolII to determine the user interface appearance

and degree of service.

* Other menu - This main-menu button supplies a list of other miscellaneous methods

offered by SAtoolII.

After identifying the objects, this research effort involved designing the specifics of the graph-

ical user-interface by putting together a user's manual. This user's-manual served as the design

specification for the graphical user interface component of SAtoolIl. Refer to the SAtoollI User's

Manual in Appendix E for more information on the graphical user interface. The user's manual

goes into more detail on what each of the window objects, drawing objects, and main menu objects

are used for.

3.6.3 Intended Use and Ezpected User for SAtoolll The menu selections in the main menu

are designed to serve the user in putting together a project using IDEF0 rather than telling him

or her what to do to put a project together. In other words, the user should already know what

IDEFO can do...SAtoolII should make it possible to do it faster and better.

3.6.4 Help from a Graphical Support Environment The design of the graphical user interface

for SAtoolII assumes that a separate graphical support environment will supply:

3-25

* Drawing, acknowledge, confirm, dialog, column menu, sign, and text windows

" -Complex object transformation and rendering in two-dimensions and three-dimensions

" Cursor, keyboard, and mouse input handling

" Multiple window management

" Graphical IDEF0 symbols

The MAGSE design provides all these products and services except for tile graphical 1DEFo

symbols. These symbols are in the design of the IDEF0 complex drawing class.

3.7 IDEFo Complex Drawing Objects

3.7.1 Complex Objects from Primitive Ones The IDEFo language mainly consists of special

graphical symbols. The SAtoollIIdesign takes the description of these symbols and indicates how

to draw-them. Specifically this is-done by the IDEFo complex drawing class. In this class are the

following IDEFo symbols as identified by the IDEFO drawing model: diagram, box, FEO, footnote,

label, line segment, metanote, note, squiggle, terminator, and connector. The MAGSE design

supplies the drawing primitives that can be combined to create these IDEF0 complex drawing

objects. The drawing primitives are a line, rectangle, circle, and text string. The MAGSE design

also provides the ability to graphically scale, rotate, and translate these complex drawing objects for

two-dimensional or three-dimensional rendering. The IDEFo manual (23) and the revised IDEFo

drawing model served as the design specification for tW'e complex drawing class component of

SAtoolll.

3.8 Project Facts and CLIPS

3.8.1 Format for the Project Files In order to expand the expert system use of the files

produced by SAtoolII, this research effort cooperated with Kitchen (20) in designating a file format

3-26

for the project files read and written by SAtoolII. The format we chose was a CLIPS fact file fcrmat

that also qualifies as an expert fact file format. CLIPS stands for the C Language Integrated

Production System. Here is an sample fact statement:

(deffacts box "box object"

(has-name Act ivity_)

(has-location X 4)

(haslocation Y 8))

The use of facts, or predicates, to save the information about an entity-relationship model

follows naturally-from the purpose of predicates. According-to Dromey, "A predicate is a formula

that may be used either to ascribe a property to an entity or to assert that certain entities stand

in some relationship." (8:57)

In other words, predicates can serve to identify the attributes of an entity and also specify

relations that hold between two or more entities.

3.8.2 IDEFo Fact and File Classes Using this fact format as a basis, the fact and file objects

for SAtoollI were identified and inter-related as illustrated in Figure 3.12. The Essential Fact

Utilities and the Drawing Fact Utilities conform to what Booch defines as class utilities containing

free subprograms (4:82,160). These free subprograms have visibility to two or more objects and

permit access to all the essential model objects and all the drawing model objects. The essential and

drawing model information passes between the fact utilities and the file objects through the use of

a buffer. In addition to the file objects is a CLIPS working memory object. This working memory

object complements the expert system aspect of SAtoolII. The class and utilities descriptions in

Figure 3.12 served as the design specification for the project facts input and output component of

SAtoollI.

3-27

euential drawing
model model

I I-

I I
I I
I I

essential drawing
fact fact

utilities utilities

essential drawing
data file CLIPS data ile

memory

LEGEND

Object

environment
types Global

Object

Message
Passing

Figure 3.12. SAtoollI Project Fact Utilities and-Files Design

3-28

3.8.3 Format for Miscellaneous Files Along with the project fact files, SAtoolII will-also

produce ASCII files containing facing page text, data dictionary information, error information,

and program usage data. These files are for output only.

3.9 Error Handling

In an effort to centralize the error handling and error messages in SAtoolII, the SAtoolil

design contains an error handler class with an error handler object. This design calls for an error

indicator-to be passed from lower design levels of SAtoollI to the higher design levels until it is

trapped in the main subprogram. The error handler object then reacts to inputs submitted to it

concerning an error number, an error -location, and a flag indicating that the error that occurred

is known-or unknown. The error handler then informs the user of the error through the use of-an

acknowledge window. It also uses a confirm window to ask the user-if he wishes to continue program

operation or let the error continue on-and abort the program. This error handling description served

as the design specification for the error handler component of SAtoolIl.

3.10 Macro Operations and Model- Constraint Management

The entity-relationship approach to object-oriented design does a good job of identifying

entities and their attributes and relationships. This approach encapsulates an entity with attribute

and relationship methods that keep its state and operation autonomous from any other entity.

Because of this autonomy factor -however, another component is needed to contain inter-model

and intra-model macro operations and project integrity constraint management methods. From

a bottom-up view, these methods provide the upper-level link and functionality for the essential

model, drawing model, complex drawing objects, and facts and cxpcrt systcm utilitics. Irom a

top-down view, these methods provide the lower-level link and functionality between the graphical

user interface and these components.

3-29

3.11 SAlooI- An Integrafed Design

The design of SAtooIII consists of many components. By designing SAtoolII in this manner

each component can be individually implemented, tested, and then integrated together. Figure 3.13

illustrates this integration. The components of the SAtoollI design are:

* Machine-independent Ada Graphical Support Environment (MAGSE) component

e IDEFO essential model component

* IDEF0 drawing model component

* graphical user interface component

o--IDEFo complex drawing objects component

e file and expert system utilities component

* error handler component

e inter-model and intra-model macro operations and project integrity constraint management

component

The description in Figure3.13 served as the design specification for the component integration

of SAtoollI.

3.12 Summary

This chapter has taken the reader through the design phase of SAtoolII. The chapter sum-

marized Johnson's work on SAtool in C and gave the background for the essential and data model

designs and the revisions made to them. It then explained the design of the machine-indcpendent

Ada graphical support environment called MAGSE, the graphical user interface, the complex IDEFo

drawing objects, the project file format, and the centralized error handling for SAtoolII. It also

pointed out the needed for explicit macro operations and-project integrity constraint management

3-30

graphical
user

essential

anddmode

constrint maagemen

object

types e mde

constrint maagsinn

Figue 3.3. Stooll Inegraed CmponntoDsig

Ob-31

methods to form the-link between the basic components of SAtoolIl and the graphical- user -in-

terface. At the end, the-chapter pulled all design components together into an integrated design

specification -for SAtoolII.

3-32

IV. SAtoollI Implementation

4.1 Introduction

This chapter takes the reader through the incremental implementation, in the Ada program-

ming language, of the components specified in the design of SAtoolIlI. The next section begins by

describing the generic multiple object manager that is used to keep track of the essential model

and drawing model objects. The third section explains how the essential and drawing models were

implemented by applying ideas from Shlaer and Mellor (30) and Kiem (19) to the model design.

The four and fifth sections cover how the machine-independent Ada graphical support environment

and the graphical user interface were implemented. The sixth and seventh sections describe the

implementation of the IDEF0 complex drawing class and the project facts utilities and files. The

eighth section deals with the error and exception handling. The ninth section describes the par-

tial implementation of the macro operations and project integrity constraint management routines.

The tenth section covers the incremental steps used in partially implementing SAtoolIl.

Each of the packages in SAtoollI withs in the Environment Types package. This package

contains constants, types, exceptions, and utility functions needed by each of the packages.

4.2 Generic Multiple Object Manager

4.2.1 The Need for a Multiple Object Manager The design of the essential model and draw-

ing model brought the need of an implementation package that created, modified, and kept tracl

of a number of objects of a specific type. This multiple object manager was visualized as a linked

list with functions and procedures to perform these functions. Because each list of objects had

a common subset of functions, the multiple object manager louked like a guud canididate fui a

generic package. After making a list of features that each for the manager, Kitchen took on the

task of implementing the generic multiple object manager package. Ile based his implementation

4-1

mainly on the Booch component known as a Queue Nonpriority Balking Sequential Unbounded

Unmanaged Iterator (3:71-96).

4.2.2 Modifications to the Nonpriority Balking Queue Component In implementing the

generic multiple object manager, Kitchen made some modifications to the ideas presented by Booch.

Ie listed them briefly (20):

- The passive iterator was replaced with an active iterator.

- Since the iterator is now active, functions and procedures can accept the iterator as a
parameter instead of a position number.

- Because an active iterator now exists and thus a pointer into the manager is available,
the function Position-Of, which returned a natural number, was not- necessary and was
removed.

- The procedure Set-Item was added to permit an item to be updated in place. This cuts
down system garbage collection and saves time when an item has-multiple attributes to
be updated or added.

- The procedure AddItem was modified to include the iterator as a parameter that
would be left pointing to the just-added item.
- The procedures Copy, Pop, and Front-Of were determined unnecessary and were
removed, but they can easily be added back again if warranted.

4.2.3 The Generic Multiple Object Manager Package Th'e generic multiple object manager

package accepts a record type parameter. It then supplies a manager type and subprograms to

create, modify, and keep track of objects with the designated record type. The key field in each

object record is the object name.

4.3 Essential and Drawing Models

4.3.1 The Need for a Transformation Methodology The information on the SAtoollI design

in chapter III covered some of the work done by Smith and others in designing an entity-relationship

model for IDEF0 . After Kitchen had revised the essential model and this research effort the drawing

model part of the IDEFO model, areas of cooperation were identified in implementing the two

models. One area was the use of a multiple object manager, described in the section above. A

4-2

second area was in the actual transformation of the entities, attributes and relationships into an Ada

implementation. Ileas were used from Shlaer and Mellor (30) on object-oriented data modeling,

from Kiem (19) on the Keystone Methodology, and from this research experience in redesigning

the essential and drawing models (20).

4.3.2 Transforming an Entity-Relationship Model into Ada Using the knowledge gained

and lessons learned in implementing the essential model and drawing model, this research effort

formulated the following transformation steps. These steps describe the methodology used in

transforming the IDEFO essential model and drawing model into actual Ada source code.

4.3.2.1 Step One: Create an E-R Model Create an entity-relationship model of a

system to identify the entities, attributes, and relationships in the system. Label all relationships

as one-to-one, one-to-many, or many-to-many.

4.3.2.2 Step Two: View the Entities as- Objects Look at the entities as objects and

consider the implementation- of the system using these objects. Determine if these objects com-

pletely identify all the objects of the system being modeled.

4.3.2.3 Step Three: View the Many-to-Many Relationships as Objects Look at the

many-to-many relationships as objects and consider the implementation of them as correlation

table objects. For the many-to-one relationships consider putting a referencing attribute field in

the 1 object. For the one-to-one relationships, consider to which object to give the referencing

attribute field.

4.3.2.4 Step Four: Modify the E-R Model Modify the entity-relationship model to

reflect the lessons learned from steps two and three. Continue iterating through steps two and

three until the entities, attribut.- nd relationships completely model the system. To test the

4-3

system, use what if situations that the system should be able to handle, and walk through the

model to check if the entities, attributes, and relationships model the particular situation.

4.3.2.5 Step Five: Code the package arrangement for the E-1? Model Code each entity

and many-to-mary relationship of the model as an object. Code the descriptive attributes of

relationships or entities as record fields in each object. Include in the many-to-many relationship

data structures a relationship tuple containing referencing attributes. Assign each object a type

class package, an object manager package, and an input/output package. In the manager and

input/output packages, with in the types class package.

4.3-2.6 Step Sit: Code the operations for the objects in the E-R Model In the object

manager package create constructor procedures to set descriptive attributes and referencing at-

tributes for entities on the one side of a one-to-many or one-to-one relationship. Create selector

functions to retrieve attributes and all relationships. The constructors and selectors should com-

-pletely represent all the visible routines from an object manager package. The types utilized in the

parameters for these routines should completely represent all visible types from an object manager

package. This completeness and visibility will be correct if the entity-relationship-model completely

contains all entity attributes and entity relationships.

If any additional visible constructors or selectors need to be added to an object manager

package, examine the entity-relationship model to see if a corresponding attribute or relationship

-exists for the new routine. If one does not exist, one of the following is probably true:

" The routine is a generalization of another currently visible routine

" The routine corresponds to an attribute or an entity relationship that was previously over-

looked

" The routine has been incorrectly inade visible and should only appear in the body of the

object manager package

4-4

4.3.3 The Multiple Object Manager and Inheritance Kitchen and this research effort dif-

fered in the model implementations in the number of multiple object manager types that were

instantiated. Because of the variety of attributes that each entity and relationship had in the

essential.model, Kitchen instantiated a generic multiple manager type for each entity and many-

to-many relationship (20). This research effort chose to instantiate just a single object manager

type, called a drawable object manager type, to handle all the graphical objects (or entities) in the

drawing model. This single type was made possible by using a kind of attribute inheritance with

the graphical entities.

To use the inheritance concept, this research effort set up a super class object type called a

drawable type and subclass types for each of the graphical objects. The first part of the drawable

type contains the attributes common to all drawables, such as name and location. The second part

contains both a discriminant unique to each drawable subclass and attribute fields to accompany

the discriminant. By using the super class and subclass arrangement, complex objects can be built

by linking together subclass objects as described in Barth (2). The complex object can then be

manipulated as if it were a single drawable. An example of a complex object is a diagram. When

nothing is attached to a diagram it serves as a simple graphical object; but multiple objects can be

placed on it. After this relationship is established, whatever happens to the diagram also happens

to all the objects placed on it. This includes such actions as storage, display, moving, scaling, and

deletion.

4.8.4 The Ada Packages for the Essential and Drawing Models Figure 4.1 and Figure 4.2

show the Ada package implementation of the essential and drawing models. Each of the packages

has no procedure or function coupling with the other packages. All ties among the various drawing

objects are maintained through the use of drawing object name strings. Because the diagram object

maintains a list of the drawable objects that are on a diagram, it wiihs in the packages in order to

use their operations. Refer to Appendix F for more information on the actual source code.

4-5

ESSENTIAL SUBSYSTEM(es-main)

Consist -OfRe ation- anager 4v i ityMan er

ICO-Reetton-t ngerData..Element..Manager

Data Dictionar

E iomen-Tv)es Project-.Manager

F igure 4.1. IDEFO Essential Data Model Implementation Packages

4-6

Line

Box Segment

Diagram

FEO Terminator

-Footnote Connector

Label Squiggle

Metanot Note

Figure 4.2. IDEFo Drawing Data Model Implementation Packages

4-7

4.4 Machine-Independent Ada Graphical Support Environment (MA GSE)

4.4.1 Comparison of Design Goals with Implementation Factors The machine-independent

Ada graphical support environment or MAGSE was designed to provide an interface between any

window system and an Ada application. It was also designed to sit on top of a window system,

shielding the application from it and thereby creating a well-defined line of separation between

the application and its graphical needs. These design considerations were one stimulus that drove

the implementation of the MAGSE. The other two were the complicated nature of the X Window

System and the SAIC Ada interface to it.

4.4.2 The Breadth and Depth of the X Window System The Massachusetts Institute of

Technology (MIT) designed the X Window System with window mechanisms rather than window

policy (25). Because of this intention, the X Window System can be used to mimic another

window system while taking advantage of the networking capabilities of X. This is this generic

window ability-brings complications and complexity with it. To just create a window, establish its

many graphical properties, and customize it to a certain style takes at least 24 X library function

calls. In addition, ten of those calls return values or data structures that are needed as parameters

to subsequent function calls that involve the window. After analyzing the source code of numerous

applications, including a two-dimensional graphics tool (5), this research effort decided to capture

all the complicated structures into a single record type and the numerous function calls into a

few macro-functions. The result is the machine-independent Ada graphical support environment

called the MAGSE. Some window flexibility is lost using the MAGSE, but much easier and simpler

window handling is gained.

4.4.3 The SAIC Ada Bindings to the X Window System The object. code for the window

and graphics functions available in the X Window System are contained in a library called xlib. The

functions in xlib are written in the C language format, which means calls to the functions and the

parameters must conform to the way C does business (25). Ada provides a compiler directive called

4-8

a pragma interface which allows calls to C libraries to be made from Ada programs. Appendix

A goes into more detail on how these pragmas work and the pragmas and data structures that

SAIC developed to enable an Ada program to make xlib calls (15). Through the use of the SAIC

Ada interface (Ada bindings) to the X Window System's xlib, an Ada program can become an X

Window client application.

4.4.4 The MAGSE: A Level of Abstraction In developing the Ada bindings to the X Win-

dow System, SAIC for the most part followed the naming conventions established by MIT for the X

Window functions, error flags, event masks, and symbols (constants). However, they also applied

the packaging and strong typing capabilities of Ada to the function groupings and the function

parameters. The MAGSE provides a level of abstraction between an application program and the

complexity of the xlib and the Ada bindings to the xlib . The MAGSE also provides specialized

windows, such as menus and dialog boxes, that are not a part of the X Window System xlib. The

aspiring Ada programmer doesn't have to spend days studying an xlib reference manual,-examin-

ing sample X Window programs in C and Ada, and searching through the SAIC source code for

parameter types and package names. He or she can just with the MAGSE packages into the appli-

cation, and then declare variables and make subprogram calls as directed by the MAGSE package

specifications. By doing this, the application will become a genuine X client.

4.4.5 The MAGSE Implementation The MAGSE implementation consists of the Ada pack-

ages shown in Figure 4.3. The MAGSE globals package contains all variables, constants, and types

shared among the other MAGSE packages. The drawing primitive package contains routines to

create lines, rectangles, text, and circles. The input device package contains routines to gather

information from the mouse and keyboard and to utilize pull-down menus, confirm boxes, acknowl-

edgement boxes, dialog boxes, and signs (buttons) for entering information into a program.

The MAGSE contains two packages to aid in two-dimensional drawing and two packages to

aid in three-dimensional drawing. These packages correspond to four of the classes in the MAGSE

4-9

design: Plane2D.Class, Matrix2D.Class, Pyramid3D.Class, and Matrix3D.Class. These packages

were implemented using the two-dimensional and three-dimensional graphics principles explained

in the text by Foley and van Dam (9:201) (9:229). The two-dimensional packages provide a two-

dimensional plane and a matrix stack. The plane can be stretched over a MAGSE window and

used to produce two-dimensional graphical images that can be scaled, translated, and rotated. The

three-dimensional packages provide a three-dimensional pyramid and a matrix stack. The X and Y

axes at the base of the pyramid can be stretched over a MAGSE window so that the pyramid call

be used to produce three-dimensional graphical images that can be scaled, translated, and rotated

(9:280). Refer to Appendix B for more information on the services offered by these four packages.

An application's view of the MAGSE is the MAGSE interface package. This package contains

the package specifications for all the MAGSE package bodies. The MAGSE interface package

contains no sign of complicated structures or numerous function calls to the X Window System

or any other window system. All this detail is kept secure in the various package bodies. The

application sees only a window identification type, choices of specialized windows, basic window

manipulation routines, and basic drawing primitive routines. In the MAGSE package bodies, the

internal structures, functions, and procedures are tailored to the specific window system that the

MAGSE will be placed on top of. By implementing the MAGSE package bodies first for the X

Window System, its structures and routines dictate mechanisms but no policy. The only restrictions

on the window system are those imposed by the speciali. ,indows offered by the MAGSE to an

application. These windows (drawing, acknowledge, confirm, dialog, column menu, sign, and text)

are not provided by the X Library (xlib) of the X Window System, but instead are implemented

right in the MAGSE. Some of the ideas used by this research effort in implementing these specialized

windows came from the X Window two-dimensional drawing tool developed by Cheng (5).

SAtoolII with its graphical user iterface is just one example of an Ada application that

4-10

drawing
primitive

plane2D) pyramid3d

an

application

matrix2D) matrix3D)

windowinu
manage< device

~ MAGSE

Figure 4.3. MAGSE Implementation Packages

4-11

takes advantage of the MAGSE. Refer to the MAGSE Reference Manual in Appendix B for more

information on the products and services the MAGSE has to offer.

4.5 Graphical User Interface

4.5.1 Packages for the Graphical User Interface The main screen window objects making

up the SAtoolII graphical user interface (GUI) design dictated the names and purposes for the

highest level Ada packaging for the interface. These packages are called Title, Help, Main Menu,

-Drawing, Objects, and Tools. Inside the main menu package are package declarations for each of

the main menu button objects. Inside the objects package are package declarations for each of the

drawing objects buttons. Figure 4.4 shows how all these packages fit together. This packaging

scheme keeps in step with the object-oriented design approach to SAtooli versus the functional

approach taken by the menu level of SAtool (See the discussion in Chapter III of this thesis on

SAtool in C).

4.5.2 What The Graphical User Interface Does and Doesn't Do Above the-level of the graph-

ical user interface packages in SAtoolII is the main subprogram. This main SAtoollI subprogram

only acts as a control for the user interface packages; it does-not supply the methods (proccdurcs

and functions) for the user interface objects. The work of the graphical user interface remains

c'rn1letely enclosed in the window object packages. The methods supplied in the packages of each

of the graphical user interface obje-cts are the menu selections described in the SAtoolII User's Man-

ual. Because of time constraints, this research effort only implemented a prototype of the SAtoollI

graphical user interface. This prototype contains a variety of MAGSE input devices. These input

devices allow a user to list and select all the features described in the SAtoolII User's Manual, but

with no actual functionality.

The fully-functional SAtoolIl graphical user interface will serve as a liaison between the user

and the lower levels of SAtoollI. It will make SAtoollI easier and more pleasant to use. Refer to

4-12

SAtooll
prototype

MACSE

Figure 4.4. SAtoolII Graphical User Interface Implementation r kages

4-13

the SAtoolIl User's Manual in Appendix E for specific information on the methods to be made

available for each of the main menu button objects and drawing objects offered by the graphical

user interface.

4.6 IDEFo Complex Drawing Objects

4.6.1 IDEFo Geometry Package The SAtoollI-design-called for an IDEFO complex drawing

class to contain descriptions of the IDEF0 symbols-and methods to draw them. This package was

not implemented in this research effort because of time -constraints. It should be implemented

using the drawing primitive package in combination with either the two-dimensional plane or three

d;mensional pyramid packages. The use of the plane or pyramid packages will allow a diagram and

its drawing object contents to be displayed- in any size, angle, or position desired. The drawing

primitive package provides the primitive-shapes needed- to -construct the complex symbols used for

the IDEFO notation.

4.7 Project Facts and CLIPS

The project file design for SAtoolIl designated-that the essential and drawing model infor-

mation for an IDEFO project be stored in -two-files in-a CLIPS fact file format. Because of time

constraints, this implementation was not done in this-research effort. Instead the contents of the

drawing model data structures were saved to-a text file-in-the format described in Appendix II.

As a suggested implementation, SAtoolII- creates and-uses two-main project files: an essential

model file with a .esrn extension, and a drawing-model file-with a .drm extension. These files contain

all the information necessary to return the-essentialzmodel and drawing model data structures in

SAtoolIl to the state thcy were in -the moment before -the files were saved. The essentid mhudJ

Ile contains the information on the activities, data elements, and-their relationships for a specific

project. It also includes some of the non-graphical- information for the data dictionary. The

4-14

essential drawing
fact fact

utilities utilities

essential CLIPS drawing

file working file
memory

Figure 4.5. SAtoolII Project Fact Files Suggested Implementation

drawing model file contains the information needed to recreate the graphical object attributes and

-relationships fcr each diagram in an IDEF 0 project. Essential and drawing model fact information

is transfered between the internal data structures and the files through the use of two fact utilities

packages which use a fact buffer. This .tiggested implementation is illustrated in Figure 4.5.

Other files are needed strictly fo, output for SAtoolII. These files are all ASCII files and are

used for facing page text, database .norniation, error information, and program usage statistics.

4.8 Error and Erceptio, Handling

The design of SAtoolIl calls for centralized error handling. This was not implemented in this

research effort because of time constraints. A. a suggested approach, this is implemented using

the Ada exception feature and by having error location, error number, known exception occurred

4-15

flag, and unknown exception occurred flag variables in the environment types package. Also in this

package are general exceptions for each SAtoolIl package. When an error occurs, it is trapped by a

subprogram's exception clause. This subprogram (procedure or function) then sets either the known

or unknown error flags if neither are set yet and raises the general package e,.ror. This exception

is then passed up through the package levels by the exception clauses of all calling subprograms

until it reaches the SAtoolI main subprogram which calls the exception handler. The exception

handler package uses the inforrmation in the error number, error location, known exception occurred

flag, and unknown- exception occurred flag variables in conjunction with the general package error

exception to inform the user of the error. This involves the use of an acknowledge window to notify

the user and a confirm window asking-the user if wants to let the error continue on and abort the

program or stop the error at this point and continue program execution.

4.9 Macro Operations and Model Constraint Management

The design of SAtoollI called for packages which contain inter-model and intra-model macro

-operations and project constraint routine.. These packages were only partially implemented in this

research effort in the implementation of a drawing model textmode-based driver program. The

upper level packages in this driver correspond directly to the SAtoolIlI graphical user interface

packages. In these packages is the source code to add and decompose boxes and source code to

build and maintain a project hierarchy of diagrams.

Some of the unimplemented macro operations can be easily coded using the box and hierarchy

code as an example. However, because of the autonomy designed into the IDEFO model, most of

the project constraint source code will take some deep thought. Follow-on research shouid consider

how the essential model and drawing model will work together in storing, updating, saving, and

loading information (facts) about an IDEF0 project.

4-16

4.10 SAtoolI - An Incremental Implementation

4.10.1 The SAtooIII main procedure Above all the packages of SAtoollI is the main subpro-

-gram or the main procedure. This procedure is implemented as part of the graphical user interface

for SAtoollI. The main procedure initializes the MAGSE, commands the graphical user interface to

create its main windows, executes the main event loop for the interface, calls the exception handler

when necessary, and terminates the MAGSE.

4.10.2 The Component Integration The implementation of the components of SAtoollI in

this research effort have occurred in an incremental fashion. Because of time constraints, certain

components were not implemented. The components implemented by this research effort and the

work with Kitchen (20) were:

* Essential model

" Drawing model

* Machine-independent Ada graphical support environment (MAGSE)

* SAtoollI graphical user interface

• Part of the file and expert system utilities

" Part of the macro operations and project integrity constraint management

The components left to be implemented are:

* Complex drawing objects

" Error handler

" Remainder of the file and expert system utilities

* Remainder of the macro operations and project integrity constraint management

4-17

Figure 4.6 illustrates the overall implementation architecture of SAtoolIl after all of the

components are implemented and completely integrated. As a means of testing and demonstrating

the performance of the implemented SAtoollI components, three programs were developed: the

drawing model driver program, the SAtoollI graphical user interface prototype, and the essential

model driver program. The first two of these programs were described earlier in this chapter. The

essential model driver is explained in the research done by Kitchen (20).

4.10.3 SAiooltl progr--n documentation Appendix D contains the file -names, compilation

order, and linking instructions to create an executable version of the demonstration programs.

Appendix F contains information on the SAtoolII Ada source code. Appendix E is the SAtoollI

User's Manual. This manual-has sections to match the needs of a variety of users. The sections

are:

e Introduction

* Getting Started

e Guided Tour

* Objects and Tools

9 Main Screen Menus

* Printing a Window

4.11 Summary

This chapter took the reader through the component implementation, in the Ada program-

ming language, of SAtoolIl. The chapter described the packages for the generic multiple object

manager, the essential and drawing models, the MAGSE, the graphical user interface, the IDEF0

geometry, the project fact files, the exception handler, and the SAtoolI! main procedure. The

SAtoolII program was designed to help a user create and modify a project of IDEFO diagrams, not

4-18

(::::user

graphical user interface
error
handler

inter-model and intra-model macro
operations and project integrity
constraint management

file and complex

essential expert drawing drawing MAGSE

model system model objects (Machine-

utilities
independent
Ada
Graphical
Support
Environment)

Figure 4.6. SAtoolII Overall Implementation Architecture

4-19

tell him or her how to put the project together. The implementation reflects that design. The user

of SAtoollI should -find it to be a software package that makes the task of requirements analysis

with IDEFO faster, better, and easier than using just paper and pencil.

4-20

V. SAtoolI Testing and Evaluation

5.1 Introduction

This chapter takes the reader through the testing and evaluation phase of SAtoolIl. The next

section describes the different types of tests in the test suite for SAtoolII and the results of those

tests. The third section lists the suggested areas that SAtoolII should be evaluated in when the

components of SAtoollI are finally all implemented and integrated.

5.2 Testing

5.2.1 Purpose of the Test Suite The test suite for SAtoollI is arranged so that an impartial

but knowledgable Ada programmer can perform a variety of tests on SAtoollI. The suite consists

of six types of tests: functional, module (package), subsystem, integration, regression, stress, and

acceptance testing (32:408-409). The functional, module, subsystem, and stress tests are performed

as soon as the packages are coded. This facilitates the incremental implementation of SAtoollIl.

The integration, regression, and acceptance testing are performed after all the components making

up SAtoollI are put together in the SAtoollI program. The major components making up SAtoollI

and involved in the subsystem tests are the MAGSE, drawing model, essential model, fact utilities,

fact files, error handling, complex drawing objects, constraint management, and graphical user

interface.

5.2.2 Test Suite For SAtooU1i The directions for performing six types of tests on SAtoolll

are given below. All test failures should be repeatable and completely documented.

5.2.2.1 Functional Testing For functional testing, test each procedure and function

in each package to ensure they perform the task they were designed to do. Perform these tests by

building a driver program for each package in SAtoolIl.

5-1

5.2.2.2 Module Testing For module testing, modify the driver programs used in the

functional testing to provide simple menus so that the procedures and functions in the modules

can be executed in a nondeterministic order. Check the modules for both proper operations and

for the handling of error conditions.

5.2.2.3 Subsystem Testing Perform subsystem testing on the MAGSE, the essential

model, the drawing model, and the graphical user interface. Test the operations of each of these

subsystems by using a derivation of the menu-driven driver programs developed for module testing.

Execute the major tasks offered by the subsystems and check for both proper operation and error

handling.

5.2.2.4 Integration Testing Perform integration testing on the SAtoolIl program after

all the component parts have been brought together into one program. In this testing use the

graphical-user interface to select each menu, object, and tool item at least once in a single session

and check for proper operation and error handling.

5.2.2.5 Regression Testing Perform regression testing on the SAtoolII program after

all the component parts have been brought together into one program. In this testing, check that

each function offere,1 in a pull-down menu in SAtool in C is offered as a method of one of the

SAtoollI graphical user interface objects. Execute the method from the graphical user interface to

see if the same desired result occurs as when the corresponding SAtool function is executed. Do not

test the ability of SAtoollI to load or save SAtool files because the two formats are incompatible.

5.2.2.6 Stress Testing Perform stress testing at both the sub, .m and the SAtoolll

level. First, push the data structure limitations past the maximum values and check if the subsys-

tems handle the failures elegantly and with adequate messages. Next, test if the SAtoolII graphical

user interface adequately responds to a series of consecutive sudden, unexpected inputs from the

mouse, keyboard, and files.

5-2

5.2.2.7 Acceptance Testing Follow these step to perform the acceptance testing of

SAtoollI:

1. Start up SAtoolII.

2. Create a new valid three-level, seven-diagram IDEF0 project; include on each diagram at

least three boxes, four line segments, three labels, one squiggle, one boundary arrow, and one

type of note.

3. Save the project as project A and exit SAtoolII.

4. Restart SAtoolII and load project A; check for any lost data.

5. In this same project A, modify the contents of one diagram, delete another diagram, and add

a third diagram to the project; follow the same minimum object rules as in step 2 above.

6. Save the project as project B-and exit SAtoolIl.

7. Restart SAtoollI and load project B; check for any lost data.

8. Sequentially execute all selections in the PROJECT, DIAGRAM, DICTIONARY, TAXI,

VIEWS, OPTIONS, and OTHER menus to check for proper operation as described in the

SAtoolII User's Manual.

9. Apply each tool in the Tools window at least once to each object in the Objects window to

check for proper operation as described in the SAtoolII User's Manual.

10. Exit SAtoolII.

5.2.3 Test Results The test suite was used to perform functional, module, subsystem, and

stress testing on all the components of SAtoolII except for the fact utilities, fact files, error hal-

dling, complex drawing objects, and overall constraint management. These components were not

implemented in this research effort. As for the components that were tested, no test failures oc-

curred.

5-3

The integration, regression, and acceptance testing for SAtoollI are awaiting the final integra-

tion of all the components of SAtoolII into one program. Partial acceptance testing was performed

on the drawing model driver program. A project was entered -into-it that contained five diagrams

in a hierarchy that was three layers deep. No test failures occurred.

5.3 Evaluation

Because of time constraints, all the components of SAtoolII were not integrated in this research

effort. Consequently, a user evaluation could not be performed. When the integration does occur

in follow-on research SAtoolII should be subjected to the same user evaluation as SAtool in C.

Johnson's evaluators-for SAtool used the following areas-for the evaluation (18:5-8-5-10):

1. System Feedback or Content of Information Displayed

2. Methods of Communication with the System

3. User Error Prevention by the System

4. Error Recovery from User Errors

5. Usefulness of the System Documentation

6. User Perception -of the System versus Expectations

7. User Confidence in the System

8. Ease in Learning to Use the System

9. Manner in which Information is Displayed

10. User's Feeling of Control of the System

11. Perception of the Usefulness of the System

12. Overall Evaluation of the System

5-4

5.4 Summary

This chapter took the reader through the -testing and evaluation phase of SAtoolII. The

chapter began by explaining the suite of tests for SAtoollI and the results of the tests that could

be performed based on the components implemented. The chapter ended by listing the areas

that SAtool in C was evaluated in and suggesting that SAtoolII should be subjected to this same

evaluation.

5-5

VL Conclusions and Recommendations

-6.1 Summary

This thesis contained six chapters. Chapter I introduced the reader to the thesis. Chapter II

presented a literature review on the X Window System, object-oriented data modeling, and graph-

ical user interfaces. Chapter III described the revision of the essential model and drawing model.

It also described the design of the two revised models, the Ada graphical support environment, the

SAtoollI graphical user interface, the IDEFO complex drawing objects, the project facts input and

output, and the error handling. Chapter IV covered the implementation of some of the SAtoollI

components, suggested- implementations for the other SAtoollI components, and information on

demonstration programs. Chapter V reviewed the testing performed on tile implemented compo-

-nents of SAtoollI and suggested a set of criteria to be used in a user evaluation of SAtoollI when

the program is completed in follow-on research. This chapter presents a summary of the thesis

along with conclusions-and recommendations.

6.2 Conclusions

6.2.1 Research Accomplishments The work performed by this research effort in combination

with that of Kitchen (20) resulted in the following accomplishments:

" Development of a-machine-independent Ada graphical support environment and demonstra-

tion of its use in the implementation of the SAtoollI graphical user interface

* Development and demonstration of an ERD to OOD mapping technique which transforms

an entity-relationship model into actual Ada source code

" Demonstration of the feasibility of using Ada and object oriented design techniques in the

implementation of a CASE tool

6-1

" Demonstration of the feasibility of representing the entire diagrair. ' archy of all IDEFo

model in a single program implementation

" Design and partial implementation of SAtoolII, a production-quality project editor for IDEF0

6.2.2 Ada and Graphics- Is it possible to put Ada and graphics in the same-sentence or are

the two incompatible? Before starting this thesis I probably would have taken the incompatible

option. However, in the past few months I have come to appreciate the many features of the Ada

language. Ada made it possible for me to implement a graphical user interface and graphical ma-

nipulation routines in a language with such admirable features as strong typing and limited variable

visibility. Ada's packaging made the incremental development approach to SAtoolII-much easier

and manageable. Ada's type checking at compile time saved many inconsistencies and unknown

type conversions that occur implicitly in lower order programming languages. At first I felt confined

by Ada's string ' ndling features, but as I became more familiar with slices and type attributes,

I found that Ada took care-of many of the drudgery jobs not implemented in other languages. I

will admit that the compiling time and runtime size of the programs were often discouraging, but

I believe that this is only a result of the implementation of the Ada language and not the language

features itself. When the SAtoolII graphical user interface prototype was finally running, there was

no indication that it was coded in Ada rather than C.

If I were given the task of coding another large X Window project, and had the choice of using

C, C++, or Ada, I would probably choose C++. This is only because of the overhead, complexity,

nd extra runtime code caused by the Ada bindings to the X Window System. As this thesis

was being finished, Rational had just announced a release of the X library code of the X Window

System in Ada. If this code functions as reliably and quickly as the X library in C, I would choose

Ada as the development language every time.

6.2.3 SAtoolff SAtoollI probably looked like another Ada software project to Smith when

he began his thesis research work in 1989 (31), but the immensity of it soon became a reality as the

6-2

design of the essential and drawing models began. When he began to implement the essential model

and incorporate the X Window System, the time and manpower were just not available. However,

his initial work with the IDEF0 models, along with Johnson's SAtool in C, and Kitchen's revision

and implementation of the essential model, made it possible for me to make portions of SAtoolII

a reality. If it wouldn't have been for the time needed in revising the essential model and drawing

model, I probably could have brought SAtoolII up to the level of production-quality. Nevertheless,

those revisions eliminated design flaws in the IDEF0 model that would have later been a serious

detriment to the project.

The development of SAtoolII is now at a baseline point. The components implemented so

far function as planned. Nevertheless, all the components need to be implemented and the whole

architecture integrated to see the full worth of the program.

6.3 Recommendations

6.3.1 SAioolIl Main Menu Selections SAtoolhl has passed through the design and partial

implementation phases. It still has components that need-to be implemented and then integrated

into a complete SA.toollI program. After this integratiun occurs, SAtoollI will still be wide open to

enhancements. To encourage these enhancements, I have prov'ded the internal routines, and the

"hooks" in the graphical user interface for future programmers to use in improving SAtoollI. lere

are my recommendations for the menu selections and program options that I did not imple:.:ent:

" Print Project and Print Diagram. This menu selection should allow the user to bring up a

window, choose a printer, and send the output just like in any PC-based program.

" Lay Out Project. This menu selection will take much more research, but it should enable

SAtoollI to completely lay out (draw) all the diagrams and graphical objects for a project

solely from the i'iformatioy, in the essential model. In other words, an IDEFo language

descripion of a project could be created from just a data dictionary.

6-3

* Derive Project. This menu selection will take much more research, also. It should enable

SAtoollI to derive (figure out) the complete contents of the essential model (data dictionary)

solely from what is in the drawing model. The user would then be free to graphically describe

a system using only the IDEF0 language.

" Line Rerouting. This menu selection should enable SAtoollI to reroute data lines on a diagram

whose current routes are either covered or made more direct by the addition or deletion of a

box.

" Dimensions. This menu selection should enable SAtoollI to improve the user's conception

of a project by displaying the IDEFO diagrams in a three-dimensional view. The underlying

tools are already in IDEF0 , the higher level logic just needs to be designed and implemented.

" Color. This feature will greatly increase the identifiability and purpose of the windows in the

graphical user interface. It could also be used to enhance text and lines in a diagram, error

conditions. or actions suggested by SAtoolII.

" Syntax Observance. This menu seiection should enable SAtooflf to immediately inform the

user if the most current addition or modification to a project violates any of the syntax rules

of IDEF0 .

" Help Level. This menu selection should allow the help feature to (over the whole spectrum

from experienced users to those needzing a step-by-step tutorial.

6.3.2 SAtoolI Command Line Options In addition to this list, the inputs from the com-

mand line options are already readable by SAtoolIl and need only be applied within the program.

These options are the display indicator, the input file name, the background and foreground colors,

the drawing font name, the help level, and the drawing line thickness.

6-4

Appendix A. Ada Bindings to the X Window System

A.1 Introduction

This appendix performs four tasks. First, it describes the directory location at AFIT of
the Ada bindings to the X Window xlib library. It also gives some specific information on the
bindings themselves. Second, it explains step-by-step how to set up an Ada X Window development
environment. Third, it takes the reader through the compiling, linking, and running of a sample
X Window client written in Ada. Fourth, it supplies a sample program that uses the Ada pragma
interface compiler directive to call C functions.

A.2 Ada Bindings Overview

In 1987, Science Applications International Corporation (SAIC) put together an Ada source
code interface (Ada bindings) to the X Window System xlib library using the Ada pragma interface
compiler directive (15). More information on using the pragma interface appears at the end of this
appendix.

These Ada specifications and bodies A copy of the Ada bindings source code to the xlib
library was obtained by AFIT and is accessible through the sol Sun workstation or the olympus
microcomputer under the /usr/X/ada/saicx2/xlib directory as shown in Figure A.1.

These Ada specifications and bodies provide the code that creates an interface between the
X Window System xlib library written in C and an application program written in Ada. See below
for more specific location information.

Note that under the saicx2 directory is also a xrlib directory. This directory contains Ada
bindings to an X Window System resources library. This library contains functions built on top of
the xlib library. The xrlib library is not available at AFIT and is different than the the X Window
System Toolkit library, xtlib, that is available and is also built on top of the xlib library. SAIC is
currently working on standardized Ada bindings to the xtlib.

A.3 Configuring an Ada X Window System Development Environment

Follow these steps to build your own Ada X Window System development environment on
olympus or on sol:

1. Create a directory in your account and change to that directory
2. Run the Verdix Ada command 'a.mklib -i' and choose '1' at the prompt (The '-i' refers only

to sol)

3. Copy the .ada files from the saicx2 directories xlib/verdix and xlib/base into your compiling
directory

4. Change all the .ada files in your compiling directory to .a files

5. In the x-lib_.a file, the pragnia interface call syntax is incorrect for the Verdix Ada compiler on
sol. Change each pragma interface from the original syntax to the revised syntax as indicated
below (Note: This job will take about 30 minutes so you may want to find someone else who
has already done it):

ORIGINAL SYNTAX:

pragma interface (C, Ada-FunctionName, C.FunctionName);

A-1

usr

x

ada bin include lib-

xinit X Window libX11.a

xwm Ih files libXt.a

xcalc libXmu.a

libXawv.a

saicx2

xlib xrlib

I I I(C library to link

C base demos verdix wt hs rga

is not available)

Figure A.1. X Window System and Ada Bindings Directory Tree

A-2

REVISED SYNTAX:

pragma interface (C, Ada.F'unction-Name);

pragma interface-.name (Ada-unction-Name, O..Function-.Name);

See the the pragma interface section at the end of this appendix for more information.

6. In the xlib/verdix directory is a make.inv file which lists the compilation order of the SAIC
Ada files. An abridged version of that file appears below:

-- compilation order of files for Verdix version

-The following units are assumed to be in the Verdix library:
-- UNCHECKED-.CONVERSION
-- SYSTEM-.ENVIRONMENT
-- SYSTEM
-- UNCHECKED-.DEALLOCATION

-- Units at dependency level 1

ada x-.lib..a -- package X-..INDOWS

-- Units at dependency level 2

ada corn nd-.line-.arguments.a
ada x-int.a -- package X-.WINDOWS-.INTERFACE
ada x..keysyms..a -- package KEY-.SYMS

-- Units at dependency levol 3

ada x-.lib.a -- package body X..WINDOWS

-- Units at dependency level 4

ada corn and-.line..arguments .a
ada x-.atoms.a -- package body X..WINDOWS.ATOHS
ada x-.colors.a -- package body X-.WINDOWS.COLORS
ada x-.cursors.a -- package body X-.WINDOWS.CURSORS
ada x..cutpaste.a -- package body X...WINDOWS.CUT-.AND-.PASTE
ada x-.events.a -- package body X-.WINDWS.EVENTS
ada x-.fonts.a -- package body X-.WINDOWS.FONTS
ada x-.graphic.a -- package body X-.WINDOWS.GRAPHIC.OUTPUT
ada x-.keyboard.a -- package body X-.WINDOWS.KEYBOARD
ada x-.regions.a -- package body X-.WINDOWS.REGIONS
ada x-.win-.mgr. a -- package body X...WINDDWS .WIND!JW-.MANAGER

-- Units from VADS library

ada math..spec.a
ada math-body.a

A-3

Starting with the first file name listed above and then following down the list, compile each
file using 'ada file-name' and ignore the inline and pragma warning messages. (However, do
not ignore the "pragma undefined" warning. If you get this message, the pragma interface
syntax is wrong for the compiler version the computer is using. A "function undefined" error
will occur at load time if you do not use the proper pragma interface syntax.) The xzevents.a
file takes the longest to compile (about 10 minutes) and needs a good deal of memory. If you
use the Verdix Ada compiler on the sol Sun workstation to compile x.events.a, you may not
be able to have the Sun View screen interface running at the same time even if you are not at
the console. If you use the Verdix Ada compiler on the olympus microcomputer to compile
x.events.a, you will not have enough memory space. Instead of trying to compile the whole
file at one time, break it up into these three parts and compile them as described below:

(a) event.types.a - Create a package specification called Event-Types and move all the types
at tile beginning of x.events.a into it. Compile the new file event-types. a first.

(b) x.events.a - After removing the type declarations in the beginning of this file, move the
entire function called Set-Event ott into a file of its own. Next, with in the Event.Types
package and declare the the Set.Event procedure as separate. Compile the altered file
x-events.a second.

(c) set-event.a - Move the entire Set-Event from x-events.a into this separate file. Compile
the new file set-event.a third.

7. There are certain bit-level functions that are performed by C functions called by the Ada
bindings. These functions are in five .c files in the saicx2/xlib/c directory. Copy these
files into your compiling directory. The file names are and.c, or.c, xbcopy.c, xbittest.c, and
xstrlen. c.

8. Append the five .c files listed above to a new common file called utils.c and use an editor to
remove any excess comments in the file.

9. Compile utils.c to create utils.o using 'cc -c utils.c'.

10. In your UNIX path statement in your .login file, insert the /usr/X/lib, /usr/X/include, and
/usr/X/bin directory paths. Ensure that these paths actually exist on the machine you are
using before putting them in your .login file. You can do this by just running the UNIX
change directory (cd /usr/X/lib) command and watching for a successful execution.

After about one hour total time of following the steps above to compile the Ada and C code,
you will have created your own Ada development environment for the X Window System.

A.4 Compiling, Linking, and Running an X Window Client in Ada

To compile, link, and run a sample X Window client program written in Ada, do the following:

1. Copy the Ilello.World.ada source code demo file from the saicx2/xlib/dlemos directory into
your compiling directory

2. Change the extension on tile file from .ada to .a

3. Compile and link the program using these commands:

ada tlello.World.a

a.ld tIello.World /usr/X/lib/libXll.a utils.o

cp a.out tIelloWorld.exe

A-4

4. If you are not executing an X Window Manager already, enter the 'xinit' command from the
console of a Sun workstation. You should not be within the Sun View environment when you
do this. (If you inadvertently execute the xinit command remotely, the X Window Server will
attempt to come up on the display of the remote machine.) The xinit command looks for a
.xinitrc file in your directory path. When it doesn't find it, only an empty X window screen
appears. Here is a sample .xinitrc file that you can put in your directory that will enable
xinit to provide a little better X Window working environment for you.

xclock -g 50x50-0+0 -chime &
xterm -g 80x24+0+0 -fn 9x15 &
xterm -g 80x24+0-0 &
tn

This sample .xinitrc file contains actual X Window client programs that all become active
UNIX processes, so be sure to end the xclock and xterms with ampersands, and leave the
ampersand off the twin (Tom's Window Manager).

5. Using the mouse, move the cursor into one of the xterm w.ndows and execute the file
Hello- World. eze. Shortly afterwards, the outline of a window will appear. Move the mouse to
position the window and click the mouse to mark the position and make the window appear.
This Hello World application is rather simple; just click the mouse in the window and the
phrase HI will appear. To exit, type Q or q and the window will go away.

A.5 Using The Pragna Interface

The Ada pragma interface compiler directive enables an Ada program to call functions in the
object code of other languages. The following is an example of how functions written in C can
be called from a driver program written in Ada. The key to this process is the pragma interface
statements in the Ada program. Note that in the pragma interface procedure in Ada, the C function
name is preceded by an underscore.

A.5.1 Routines.c Source Code File in C

/* Begin Routines.c */

functiont)
{
printf("This is function i\n");
return(i);
}

function2 ()
{
printf("This is function 2\n");
return(2);
}

/* End Routines.c */

A-5

A.5.2 Driver.a Source Code File in Ada

package FunctionTestPackage is

function First-Function return integer;
function Second-Function return integer;

-- This is the revised syntax for use on sol --
pragma interface (C, First-Function);
pragma interface-name (First-Function, "_functionl");

pragma interface (C, SecondFunction);
pragma interface-name (Second-Function, "_1function2");

end FunctionTestPackage;

with FunctionTest _Package;

procedure Driver is

First-Result,
Second-Result integer;

begin
First-Result FirstFunction;
Second-Result Second_Function;
end Driver;

A.5.3 Compiling, Linking, and Running The Program

cc -c Routines.c

ada Driver.a

a.ld Driver Routines.o

cp a.out Driver.exe

For more information, refer to page 6-2 in the Verdix User's Guide (Sun-3 UNIX version 5).

A.6 Summary

In this appendix, the reader learned about the set up and use of the Ada bindings to the X
Window System xlib library. This included finding the location of the Ada. bindings source code,
creating an Ada X Window development environment, executing an X Window client in Ada, and
examining the source code of an Ada program that used the pragma interface compiler directive to
call C functions.

A-6

Appendix B. MAGSE Reference Manual

B.1 Introduction to the MAGSE Reference Manual

The MAGSE is the Machine-Independent Ada Graphical Support Environment. It consists
of these Ada packages compiled in this order:

ada. magse-.interface.a <-- NAGSEInterface package specification
and body along with other package
specifications except MAGSEGlobals

ada magse-.globals.a <-- HAGSE-.Globals package specification
ada window-juanager. a <-- Windo...Maxiager package body
ada drawing..primitive.a <-- Drawing-Primitive package body
ada input..Aevice.a <-- Input-.Device package body
ada matrix2d-.stack.a <-- Matrix2D-.Stack package body
ada plane2d. a <-- Plane2D package body
ada matrix3d-.stack.a <-- Matrix3D..Stack package body
ada pyramid3d.a <-- Pyramid3D package body

The products and services offered by each of these packages are explained in the following
sections.

B-1

B.2 The MAGSE.Interface Package

The MAGSE.Interface package specification provides a machine-independent interface be-
tween an Ada application program and a specific window system. It is the only package that an
application needs to with in to use the MAGSE. This is because the MAGSE.Interfacc pack.ge
specification contains the specifications for all the MAGSE package bodies. The MAGSE.Interface
package specification contents remain unchanged for each different window system the MAGSE may
be used with, but the package bodies that make up the MAGSE adapt the MAGSE subprograms
into calls that the specific window system understands. Currently, the MAGSE package bodies
exists only for the X Window System. Refer to Appendix A of this thesis to find out how to set,
up and use an Ada X Window development environment.

To make the constants, variables, procedures, and functions of the MAGSE available to an
application, place the following Ada statement just before the package or procedure that will use
the MAGSE resources:

with MGSEInterface;

B.2.1 Global Constants These are the constants that the highest level of the MAGSE.Interface
makes available to an Ada application.

MaxWindowID. This consttnt represents the maximum numbei of windows that an appli-
cation can have active at one time. Reducing this number decreases the amount of memory an
application requires to run in. Currently this value is 25.

Maxiinum.WindowStringLength. This constant represents the wiaximum number of char-
acters stored for the all the non-menu character strings used in the MAGSE. Currently this value
is 20.

Maximum-MenuString.Length. This constant represents the maximum number of characters
stored for menu entry character strings used in the MAGSE. Currently this value is 25.

Null.Window.String. This constant represents a non-menu Window.String containing no
information.

NullMenuString. This constant represents a menu WindowString containing no informa-
tion.

Maximum.MenuEntries. This constant represents the -naximum number of selections in a
column menu. Currently this value is 10.

ZeroMenuEntry. This constant is returned by a column menu if the user clicks outside the
menu to cancel.

Main-Window-ID. This constant represents the window in an application of which all other
windows are a parent of. The main window is automatically created when an application executes
the InitializeWindowEnvironment procedure.

ParentOf.MainWindowiD. This constant is used as the parameter for procedure or function
calls that require the parent of the Main.Window-ID. The parent of the main window is logically
the entire screen.

B.2.2 Global Types These are the types that the highest package level of the MAGSEIeracc
makes available to an Ada application.

WindowJD.Type. The Window-Manager returns a variable of this type when it creates a
window. Each window ID is unique. The MAGSE later requests thic window ID in all window-
related calls.

B-2

WindowPurpose.Type. A constant of this type names one of seven mutually-exclusive pur-
poses that an application requests for a specific window. These seven purposes are:

" DRAWING - used for displaying on the screen general images involving text and lines

" ACKNOWLEDGE - used to display on the screen a message which a user acknowledges with
a button or key press. The cursor location does not matter.

" CONFIRM - used to display on the screen a question which a user answers by clicking on a
yes, no, or cancel button

" DIALOG - used to display on the screen a message which a user then responds to by entering
information from the keyboard and pressing ESC to cancel or RETURN to accept

" COLUMN.MENU - used to display a vertical menu of one to ten selections which a user then
clicks on to choose a selection or clicks outside of to cancel

" SIGN - used to display rectangular signs filled with text which an application can position
and have the user click on

" TEXT - used to display on the screen symbols or text which serves to identify an application
or region of the screen

Window.StringType. This type maintains uniformity in the non-menu character string pa-
rameter types of the MAGSE routines. Its length is governed by the MaximumWindowString.Length.
To allow for changes in this length, the MAGSE provides a function to convert any character string
type to a Window.StringType.

MenuStringType. This type maintains uniformity in the menu character string parameter
types of the MAGSE routines. Its length is governed by the Maximum..MenuString.Length. To
allow for changes in this length, the MAGSE provides a function to convert any character string
type to a Menu.String.Type.

MenuEntries.Range. The type represents the column menu return values ranging from the
ZeroMenuEntry through the MaximumMenuEntries.

Menu.Entries.List-Type. Variables of this type are an array with Maximun.MenuEntries of
character strings of MenuStringType. The index of this array corresponds to the selection value
returned by a column menu.

ColorTableRange. This type represents the number of indices in a color table. Currently
this range is 0 to 1.

Color.Table.Type. Variables of this type are an array of color values ranging from 0 to 255.
The number of entries in a color table is dictated by the Color-Table.Range.

Confirm-Type. A constant of this type names one of three values returned by a confirm
window. These values are CONFIRM-YES, CONFIRM-NO, and CONFIRM-CANCEL.

Sign.Dimensions.Type. Variables of this type are passed as parameters to the Set.Sign pro-
cedure. The type is a record with four integer fields: UpperLeft.X, UpperLeft-Y, LowerRight.X,
and LowerRightY, which describe the box size and location.

SignRecord.Type. Variables of this type are handy to use by an application when it's main-
taining information about the signs contained in a sign window. This type is a record with three
fields:

" Dimensions: SignDimensionsT-,pe

* SignName: Window.StringType

* Name.Length : integer;

B-3

'I'

B.2.3 Global Commend Line Variables These are the command line variable-. chat the high-
est package level of the MAGSEInterface makes available to an Ida application.

AcknowledgeBeepDesired. This variable is a boolean flag indi, a .ing if the ap,,'ication wantr
a beep to occur each time the application executes the Show.Window procedure for an ack 3wlcdg,
window. The default value is false.

Display-Name. This variable, a WindowString.Type, contains tbe name of the display that
the Window-Manager should get all input from and send all h.put to. The default value is the
display of the machine the application is running on.

Input.FileName. This variable, a Window.String.Type, cointains a file name that can be
used any way an application wishes. It has no meaning for the Window-Manager. The default
value is Null.Window-String.

ForegroundColor.Name. This variable is a Window.String.Type containinf; a color na s.e
of the color the Window.Manager should use initially for all window foregrounds. Currently the
available names are black and white. The default value is black.

Background.ColorName. This variable is a Wiidow.ftring.Type -ontaining a colo, name
of the color the Window-Manager should use initially for all window backgrounds. Currently the
available names are black and white. The default value is white.

Debug.MessagesDesired. This variable is a boolean flag indicating if the :indowManager
should display the execution debug messages built into its pi-icedures and functions. The default
value is false.

Drawing.Font.Name. This variable is a Window.String.Type coa.ainin- the name of a font
recognized by the specific window system called upon "n tbe WindowvManager package body. It
has no meaning for the Window-Manager itself except that it is a character string. The default
value is "9x15", which is a valid X Window System font name.

ProgramlHelp.Level. This variable is an integer containing a number that an application can
use any way it wishes in establishing its help levels. It has no meaning for the Window.Manager.
The default value is 0.

DrawingLineThickness. This variable, a positive integer, is the thickne-s of the lines drawn
by the Set-Sign, Set-Pixel, Set-Line, and SetRectangle procedures. The default value is 1.

B.2.4 Constructors The highest package level of the MAGSE.Interface co %.ains no con-
structors.

B.2.5 Selectors These are the selectors that the highest package level of the MAGSE.Interface
makes available to an Ada application.

function StringToWindowString (In-Value : in string)
return WindowStringType;

function StringToMenuString (In-Value : in string)
return MenuStringType;

B.2.6 Exceptions This is the exception raised at the highest package level of the MAGSE-.ntcrfac-

MAGSEInterfaceError : exception;

B-4

11.3 The WindowManager Package

B.3.1 Constructors These are the constructors that the Window-vlanager package of the
MAGSE-Interface inakes available to an Ada application.

procedure Initiaize-Windov..Environment (Hain..Upper-.Left.X,
Main-.Upper-.Left.Y,
Main..Windov..Width,
Main-.Windou..Height :in integer);

procedure Terminate-Vindo..Environment;

proceduro Create-Window (Upper-.Left-.X, Uppr-.Left-.Y,
Wind~ow-.Width, Window-.Height :in integer;
Is-..APop-.Up in boolean;
Purpose irt Window-.Purpose-.Typa;
Window-.Name in Window-.String-Type;
Parent-.ID in Window-.ID-.Type;
WindovjID out Window-.ID..Type);

procedure Show-.Window (Window..ID in Window-D-.Type);

procedure Clear-Window (Window-ID in Window.ID..Type);

procedure Hide-.Window (Window_.ID in Window.ID..Type);

procedure Move-.Window CWindew.ID in Window-.ID..Type;
Upper.Left-.X, Upper.Left.Y :in integer);

procedure Set-.Window-.Purpose (Window.ID in Window-.ID-.Type;
Purpose in Window-.Purpose-.Type);

procedure Set-.Window..Font (Window.ID in Window-1D.Type;
Font-.Name in string);

procedure Set..Confirm-.Question (Window.ID :in Window-.ID..Type;
Confirm-.Question in Window.String.Type);

procedure Set..Dialog..Prompt (Window-.ID in Window..ID..Type;
Dialog-.Primpt :in Window.String.Type);

procedure Set-.Henu_.Entries CWindow.ID in Window.ID..Type;
Number-.Of-.Entries in Menu-.Entries-Range;
Entries-.List :Menu-.Entries-List-Type);

procedure Destroy-Window (Window.ID :in Window.ID..Type);

procedure Set..Foreground..Color (Window-.ID in Window.ID-.Type;
Table-Index in Color-.Table..Range);

procedure Set-Background-.Color CWindow-.ID in Window..ID-.Type;
Table-.Index :in Color-.Table..Range);

B-5

procedure Set-.Border-.Color (Windo...ID :in Window..ID-.Type;
Table-.Index in Color..Table-.Range);

procedure Set-.Color-.Table (Table-.Index in Color-jrable.Range;
R, G, B :in integer);

B.3.2 Selectors These are the selectors that the Window-.Manager peackage of the MAGSE-Interfacc
makes available to an Ada application.

procedure Get-.Windov_.Limits (Window..ID :in Window-ID-.Type;
X...inimu, Y...H nimum,
X-Maximum, Y..Maxinum, out integer);

procedure Top-.Te~t-.Line-.Position (Windo..ID :in Window-ID-.Type;
X..yosition, Y-Position :out integer);

procedure Next-.Text..Line-Position-Down CWindow-.ID :in Window-.ID-.Type;
Old_.XPosition, Old_.Y-.Position in integer;
New-.XPosition, New-.YPosition out integer);

procedure Next-.Text-.Line-.Position-Up (Window-.ID :in Window-.ID-.Type;
Old-K-..Position, 01d-Y-Position in integer;
New-.X'osition, New...LPosition out integer);

procedure Bottom-.Text..Line-.Position (Window_.ID :in Window.ID..Type;
X..Position, Y-.Position :out integer);

B.3.3 Exceptions These are the exceptions that are raised by the Window-Manager package
of the MAGSEinterface.

Window-.Maiager-.Error exception;
Conimand-.Line-.Error exception;
Display-Not-.Open exception;
No-..ore-.Free-.Windows-.Error exception;

1B.4 The Drawing..Primnitive Package

B.4.1 Constructors These are the constructors that the Drawing..Primitivc package of the

MNAGSE..Interface makes available to an Ada application.

procedure Set..Cursor..Position CWindow-.ID :in Window-ID-.Type;
X-.Position, Y-.Position :in integer);

procedure Set-.Sign (Window_.ID :in Window-.ID-.Type;
One-.Line-.Text :in string;
Dimensions :in out Sign-.Dinensions-.Type;
Display-Normally :in boolean);

procedure Set-.Pixel (Window-.ID :in Window-.ID-.Type;

B-6

X, Y : in integer;
Visibility-Desired : in boolean);

procedure Set-Line (WindowID : in WindowIDType;

XSource, Y-Source,
XDestination, YDestination : in integer;

Visibility-Desired : in boolean);

procedure Set-Text (WindowID : in WindoIDType;

X, Y : in integer;
Phrase : in string;

Visibility-Desired : in boolean);

procedure Set-Rectangle (Windo._ID : in WindowIDType;
UpperLei-tX, UpperLeftY,
LowerRightX, LowerRight-Y : in integer;

Visibility-Desired : in boolean);

procedure Set-Circle (Window.ID : in WindowIDType;
UpperLet-X, UpperLeft-Y,
LowerRightX, LowerRightY : in integer;
Visibility-Desired : in boolean);

B.4.2 Selectors This is the selector that the Drawing-Primitive package of the MAGSE-Interface
makes available to an Ada application.

function PointIsInSign(XValue, YValue : in integer;
Sign : in Sign-DimensionsType)
return boolean;

B.4.3 Exceptions This is the exception raised by the the Drawing.Primitive package of the

MAGSEInterface.

DrawingPrimitiveError : exception;

B.5 The Input-Device Package

B.5.1 Constructors These are the constructors that the Input.Device package of the MAGSE.Intcrfacc

makes available to an Ada application.

procedure CheckForChangeInWindow-AlreadyShowing
(Window.ID : in WindowIDType;
Change-Found out boolean);

procedure WaitForKeyPress (KeyValue out character);

procedure WaitForMouseClick (Window.ID : out Window.IDType;
XPosition,
YPosition : out integer;
LeftButtonPressed,

B-7

Middle-.Button-.Pressed,
Right-.Button-.Pressed :out boolean);

procedure Wait-.For-Key-Press-Or-M.ouse_.Click;

procedure Wait-.For-.Acknowledgement CWindou..ID in Window-.ID-.Type;
Phrase-i in string;
Phrase-2 in string;
Phrase-.3 in string;
Phrase-4 in string;
Phrase-S. in string);

B.5.2 Selectors These are the selectors that the Jnput..Device package of the MAGSE-Intrface
makes available to an Ada application.

function Get-.Confirm_.Choice (Window-.ID :in Window..ID-.Type)
return Confirm-.Type;

function Get-.Dialog-.Response (Window-.ID :in Windou..ID-.Type)
return Window-.String-.Type;

function Get-M.enu_.Entry_.Choice (Window_.ID :in Window..ID-Type)
return Menu-.Entries-.Range;

B.5.3 Ezcepiions This is the exception that is raised by the Input-Device package of thle
MAGSE..Interface.

Input-.Device-.Error :exception;

B.6 The Matrix2D.Stack Package

B.6.1 Constructors These are the constructors that the Matrix2D..Stack package of the
MAGSE-Interface makes available to an Ada application.

procedure Clear-.Matrix2D-.Stack;

procedure Load-.Matrix2D CM :in Matrix2D-.Type);

procedure Load-.Identity-.Matrix2D;

procedure Pop-..atrix2D;

procedure Push-.Matrix2D;

procedure Multiply-Mjatrix2l C M in Matrix2D_.Type);

procedure Rotate-M.atrix2D CDegrees :in Float);

procedure Scale-.Matrix2D CX-.Scaling, Y-.Scaling :in Float);

procedure Translate-.Matrix2D C X.Translation, Y-.Translation in Float);

B-8

B.6.2 Selectors These are tne selectors that the Matrix2D.Stack package of the MAGSE-Interfacc
makes available to an Ada application.

function Get-M.atrix2D return Matrix2D-.Type;

function Matrix2D..Stack.Is.Empty return boolean;

function Matrix2D-.Stack_.Is-.Full return boolean;

B.6.3 'Exceptions This is the exception that is raised by the Matrix2D.Stack package of the
MAGSE-Interface.

Matrix2D-.Stack-.Error :exception;

B.7 The Plane2D Package

B. 7.1 Constructors These are the constructors that the Plane2D package of tile AIAGSEInterfacc
makes available to an Ada application.

procedure Set-.Plane2D
CX...inimum, YJMinimwu, X-.Maximum, Y-Maximum :float);

procedure Draw-.Line2D CWindow-.ID :in Windo..ID-.Type;
X1, Y1, X2, Y2 :in float;
Visibility-.Desired :in boolean);

procedure Write-.Text2D CWindow-.ID :in Window-.ID..Type;
Xi, Yi: in float;
Phrase :in string;
Font-.Size :in integer;
Visibility-.Desired :in boolean);

B.7.2 Selectors These are the selectors that the Plane2D) package of thle MAGSE-Interface
makes available to an Ada application.

procedure Inquire-.Plane2D (XMinimum, Y-Minimum, X..Maxirnum,
Y..Maximum :out float);

function In-.Plane2D (X-.Value, Y-.Value :in float) return boolean;

B. 7.3 Exceptions This is the exception that is raised by thle Plane2D) package of the MAGSE-Intrfc.

Plane2D..Error :exception;

B1.8 The Matriz3lX Stack Package

B.8.1 Constructors These are the constructors that the Matrix3D-Stack p~ackage of the
MAGSE-Interface makes available to an Ada application.

B-9

procedure ClearMatrix3DStack;

procedure LoadMatrix3D (M : in Matrix3DType);

procedure LoadIdentityMatrix3D;

procedure PopMatrix3D;

procedure PushMatrix3D;

procedure MultiplyMatrix3D (M in Matrix3DType);

procedure RotateMatrix3D (Axis in character; Degrees : in Float);

procedure ScaleMatrix3D (XScaling, YScaling, ZScaling : in Float);

procedure TranslateFMatrix3D (XTranslation, YTranslation,
ZTranslation : in Float);

B.8.2 Selectors These are the selectors that the Matrix3D.Stack package of the MAGSE-Interface
makes available to an Ada application.

function GetMatrix3D return Matrix3VType;

function Matrix3DStackIsEmpty return boolean;

function Matrix3DStackIsFull return boolean;

B.8.3 Exceptions This is the exception that is raised by the Matrix3D.Stack package of the
MAGSE-Jnterface.

Matrix3DStackError : exception;

B.9 The Pyramid3D Package

B.9.1 Constructors These are the constructors that the Pyramid3D package of the MAGSE-hntcrfacc
makes available to an Ada application.

procedure LookAt(VX, VY, VZ, PX, PY, PZ, Twist : in float);

procedure Perspective(FieldOfViewY, Aspect, Near, Far : in float);

procedure DrawLine3D (WindowID: in WindowIDType;
XI, YI, ZI, X2, Y2, Z2 : in float;
Visibility-Desired : in boolean);

procedure WriteText3D (WindowID : in WindowIDType;
Xl, YI, ZI, X2, Y2, Z2 : in float;
Phrase : in string;
Font-Size : in integer;
Visibility-Desired : in boolean);

B-10

B.9.2 Scectors These are the selectors that the Pyramid3D package of the MAGSE.Interface

makes available to an Ada application.

procedure InquireLookAtValue(VX,VY,VZPX,PY,PZ,Twist : out float);

procedure InquirePerspectiveValues (FieldOfViewY, Aspect, Near,
Far : out float);

function In.Pyramid3D(XValue,Y..Value,ZValue : in float) return boolean;

B.9.3 Exceptions This is the exception that is raised by the Pyramid3D package of the
MAGSE.Interface.

Pyramid3DError : exception;

B-Il

Appendix C. MAGSE Source Code Information

C.1 Introduction

The names and contents of the Ada source files for the Machine-independent Ada Graphical
Support Environment (MAGSE) are listed below. The only version of the MAGSE that is cur-
rently available interfaces with the X Window System. The source code files for the MAGSE are
maintained by the Department of Electrical and Computer Engineering at the Air Force Institute
of Technology.

C.2 File Names and Contents

magse-interface.a MAGSEInterface package spec and body
along with all other MAGSE package
specifications except MAGSEGlobals

magse-globals.a MAGSEGlobals package specification
window.manager. a Window-Manager package body
draving.primitive.a Drawing-Primitive package body
input.device.a Input-Device package body
matrix2d-stack.a Matrix2DStack package body
plane2d.a Plane2D package body
matrix3d-stack.a Matrix3DStack package body
pyramid3d.a Pyramid3D package body

C-1

Appendix D. SAtoolIf Configuration Guide

D.1 Introduction to the SAtoollI Configuration Guide

SAtoolII consists of a number of source files. In addition, the SAtoollI program uses the
Machine-Independent Ada Graphical Support Environment (MAGSE) to perform its graphical user
interface and drawing chores. This configuration guide details the compiling order of the MAGSE
files and SAtoollI files to create the SAtoollI prototype program, the drawing model driver program,
and the essential model driver program. The next section presents all of this information using a
UNIX script file format to better illustrate the configuration of SAtoollI.

D.2 SAtoollI Configuration File

SAtoolII Package Compiling and Incremental Program Creation Order

Instructions : Execute Parts A through D, with their respective
levels, to produce the following executable
programs:

sa-prototype - SAtoolII interface prototype and MAGSE test and
demonstration program
dr-driver - Drawing Model test and demonstration program
es-main - Essential Model test and demonstration program

###

Part A : Machine-independent Ada Graphics Support Environment
Packages (MAGSE)

Level A-i
ada magse-interface.a #(600 lines)
ada magse.globals.a #(200 lines)
ada windowmanager.a #(1800 lines)
ada drawingprimitive.a #(600 lines)
ada input.device.a #(1300 lines)

Level A-2
ada matrix2d-stack.a #(300 lines)
ada plane2d.a #(500 lines)

Level A-3 (optional)
Only compile these files if 3-D rendering will be used
ada matrix3d-stack.a #(300 lines)
ada pyramid3d.a #(700 lines)

Level A-4
SAtoolII interface prototype packages
ada sa-title-window.a #(80 lines)
ada sa.helpwindow.a #(90 lines)
ada sa.diagram.a #(200 lines)
ada sa.drawing.window.a #(100 lines)

D-i

ada samainmenuswindow.a #(800 lines)
ada sa-objects.indow.a #(300 lines)

ada sa-toolsswindow.a #(400 lines)

Level A-S
SAtoolIl interface prototype test and demo program "saprototype"
ada sa-prototype.a #(200 lines)
a.ld saprototype /usr/lib/libXii.a utils.o
cp a.out sa-prototype

Part B : Environment Types and Generic List Manager Packages

Level B-i
ada es-genev.a

###

Part C : Essential Model Packages

Level C-i
This group of files can be compiled in any order
ada es.proj.a
ada es-activ.a
ada es-datel.a

Level C-2
This group of files can be compiled in any order
ada es-hista.a
ada es-conof.a
ada esICOM.a
ada mnuio.a

Level C-3
ada esscalls.a

Level C-4
ada esfactu.a

Level C-5
ada es-esmio.a
ada esclpwm.a

Level C-6
Essential Model test and demonstration program "es-main"
ada -M esmain.a
cp a.out es-main

U###UUUU##UU#UU####UUUU########U#######UU**UUUU###U#U#########

Part D : Drawing Model Packages

Level D-i

D-2

ada drawable.a. *C400 lines)

Level D-2
This group of files can be compiled in any order
ada dr-box.a #C900 lines)
ada dr..feo.a #(700 lines)
ada dr-.footnote a #(800 lines)
ada dr..label.a #(800 lines)
ada dr..line.a #(800 lines)
ada dr-jnetanote.a. W(OO lines)
ada dr~note.a #(700 lines)
ada dr..squiggle.a #(800 lines)
ada dr-.stub.a #(800 lines)
ada dr-terminator.a. #(800 lines)

Level D-3
ada dr..diagraxn.a #(1000 lines)
ada dr-.project.a #(1200 lines)
ada dr..exaiple.a #CiOOO lines)

Level D-4
SAtoollI interface (text-mode derivative) jpakages
ada dr-.title-.screen.a WO7 lines)
ada dr..help-.screen.a #(60 lines)
ada dr-.draving-.screen.a. #(600 lines)
ada dr-.main-.menu-..screen.a #0100O lines)
ada dr..objects-.screen.a #(100 lines)
ada dr-.tools-.screen.a #(500 lines)

Level D-S
Drawing Model test and demonstration program "dr-driver"
ada -M dr..driver.a. #(160 lines)
cp a.out dr-.driver.exe

end of file

D-3

Appendix E. SAtoolI User's Manual

E.1 INTRODUCTION

E.1.1 Background and Purpose The SAtoollI software is an IDEF0 project editor program1.
IDEFo stands for ICAM (Integrated Computer Aided Manufacturing) Definition Method Zero and
is a rule-based graphical symbol notation language. IDEFo was originally designed to describe the
function model of a manufacturing system or environment. This function model then acted as a
structured representation of the system functions and of the information and objects relating those
functions. AFIT has expanded the purpose of IDEFo by using it in the requirements analysis phase
of the software life cycle. SAtoollI adds the power of the computer to this requirements analysis
process.

E.1.2 Features SAtoollI lets you completely create, modify, save, load, check the syntax of,
and print the diagrams of an IDEFo project faster and easier than using pencil and paper or even
a general-purpose computerized paint program. It supplies you with specific tools and services to
build diagrams using the IDEF0 language notation; however, it is not designed to teach you how
to put a project together. Nevertheless, SAtoolIl's built-in help facility will guide you through its
many features and work with you in producing IDEF0 diagrams in less than an hour.

The user interface of SAtoollI should look very familiar to you. It is based on the design of
popular case tools, word processing programs, paint programs, desktop publishing programs, and
circuit design software. It also offers many specialized features such as a thumbnail view of all
diagrams in a project, automatic routing of lines, and the ability to store, search for, recall, and
delete any diagram by name only.

E.1.3 System Requirements SAtoollI is an X Window System client program. This means
that the computer having the graphical display monitor that SAtoollI appears on must hac an
X server and an X window manager program running on it, a keyboard, and a 3-button mouse.
However, the SAtoollI program itself can run remotely on a computer networked with the comput r
having the graphical display, keyboard, mouse and X programs. The SAtoollI program curreltlI
can run on a computer (host or remote) with the UNIX operating system and a 68000 processor.
Refer to the Getting Started section for more information.

E.1.4 Overview This manual appeals to a variety of user personalities. The anxious user
can read the Getting Started section and have SAtoolII running almost immediately. The more
methodical user can refer to the Getting Started section and then the Guided Tour section for a
walk through the basics of SAtoollI. The curious user can study the in-depth descriptions in the
Objects and Tools section and the Main Screen Menus section. The I need it right now user can
skim the Getting Started section and the Printing a Window section to get enough information on
how to produce an IDEF0 diagram on paper as quickly as possible.

E-1

E.2 GETTING STARTED

E.2.1 Quick Start If you don't have time to read the manual, the steps below can get you up
and running right now. The workstation you are using should have a graphical display, keyboard,
3-button mouse, and an X server and X window manager running on it. If you are missing any of
these items, you will need to refer to the other sectiolis in this manual before starting. Here are
the Quick Start steps:

1. Create an SAtoolII directory and change to that directory.

2. Type 'SAtoolIl RETURN' . A window outline will soon appear on the screen.

3. Use the mouse to position the window outline to a desired screen location; press the left
button to finally place the window.

4. When the SAtoolII screen appears, use the left mouse button to click on P-ROJECT on the
left side of the main menu.

5. In the PROJECT menu, use the left mouse button to click on the New Project selection.

6. When the dialog box appears, type in a new project file name of your choice and press
RETURN.

You are now ready to create and modify an IDEFo diagram or multiple IDEFO diacrams.,,Use
the left mouse button to bring down the submenu of any main menu item or to select an IDEFO
object or tool; use it also to mark the start point of a drawing ope-.ation. Use the right mouse
button to complete or mark the end of a drawing operation. Use the middle mouse button to cancel
the drawing operation you are currently performing.

To save your work, use the left mouse button to click on PROJECT. Then use tie left mouse
button to click on the Save Project selection.

To exit SAtoolII, use the left mouse button to click on PROJECT. Then use the left mouse
button to click on the Quit selection."

E.2.2 Operating Environment SAtoolII uses the window and graphics features of the X
Window System produced by MIT. To run SAtoolIl, you must have the following:

" A computer workstation or personal computer with an X server program and an X window
manager running on it, a graphical display, a keyboard, and a 3-button mouse

" A host computer which runs the UNIX operating system and has a 68000 processor (The host
computer can be the same as the computer workstation or personal computer)

* Directory path access to the executable version of the SAtoolII program

You can execute SAtoolIl on a remote computer by using the UNIX remote shell command
(rsh). Refer to the -display command line option for more information.

E.2.3 Connand Line Options You can start the SAtoolIl program by typing 'SAoohll
RETURN'. You can also follow 'SAtoolII' by a number of command line options before pressing
RETURN. If you leave out one or more of these options, SAtoolII uses the default value for that
option. One of the options is -help. This option brings up the following usage summary on the
screen and terminates SAtoolII.

E-2

usage: program-name [-options ...I

where options include:

-bp or -beep Turn on acknowledgement beep.
Default is off.

-d Chost]:server[.screen] Set display to use. Default is
UNIX DISPLAY variable.

-display Chost]:serverC.screen] Same as above.

-f <file-name> Set desired input file.
Default is none.

-file <file-name> Same as above.

-fg <color> Set foreground color.
Default is black.

-foreground <color> Same as above.

-bg <color> Set background color.
Default is white.

-background <color> Same as above.

-db or -debug Turn on debug messages.
Default is off.

-fn <font-name> Set drawing font name.
Default is 9x15.

-font <font.name> Same as above.

-h or -help Show this usage summary
and exit program.
Default is no summary.

-lv <number> or level <number> Set program help level.

Default is 0.

-ln <number> or -line <number> Set drawing line thickness.
Default is 1.

E.2.3.1 Acknowledgement Beep One of many special windows used by SAtoolIl is
an acknowledge window. This window appears on the screen with a message in it for you to
acknowledge by pressing a key or mouse button. Setting the acknowledge beep on will make a beep
occur each time SAtoollI display an acknowledge window.

E-3

E.2.3.2 Display One of the outstanding nspects of the X Window System is its ability
to send graphical display information over a network. The display option tells SAtoollI and the
X Window System the name of a remote computer and display to exchange graphical information
with.

An application program that uses the X Window System ' referred to as all X client. An X
client can execute on one computer and have all of its graphical input and output handled on tile
display, keyboard, and mouse of a remote computer connected through a network. When an N client
begins execution, the X Window System automatically chooses the most efficient communication
route between the client and the display. If the client executes on the same computer where the
display is located, this route is rather simple. However, the UNIX remote shell cc -'mand, the X
network protocol, and an X server program make it possible to remotely execute an X client. Below
is an example scenario on how to execute a remote X client and establish the remote connection
back to the host computer:

Two UNIX workstations, each with a graphical display, are on the same network and
have the same file server. The workstations are named alpha and beta. Beta runs
programs three times faster than alpha. A user who logs into alpha can remotely use
beta (rlogin or rsh) without a password check. The same is true for a user on beta. The
user on alpha has already entered the xinit command and has an X window manager up
on the screen. The user on beta is running another type of window system. The user
of alpha wants to run SAtoolII on beta because the computer is faster, but he wants
alpha to handle all the display input and output because that is the computer he is at.
To do this, he enters the following commands:

%alpha: xhost beta
%alpha: rsh beta "SktoolII -display alpha:O" &

Here is a list of important points to remember when following this example:

" An X server with an X window manager and Xterm client must be running on the workstat ion
of the console that you are at. In the example above, that workstation is alpha.

" You enter the commands in the example above in the xterm window on your computer.

" The xhost tells the X server on your computer which remote computers are allowed to make
connections to the X server on alpha.

* The rsh beta SAtoollI tells UNIX to run SAtoollI on beta's processor. Beta must have direct
access to the SAtoolII executable code (symbolic links cause problems). The X server on alpha
does not need to know anything about the location or purpose of the SAtoolII progran.. If
only needs to know that SAtoolII is an X client.

" The -display aipha:O tells SAtoolII to receive all of its graphical input from and send all of
its graphical output to display 0 on alpha. The displays attached to a single processor in
UNIX are numbered starting with 0. Because alpha has only one display, the number for that
display is 0.

* The ampersand tells UNIX to begin the program on beta as a separate process and return
input and output functionality to the xterm window on alpha.

E-4

E.2.3.3 File Name SAtoolII saves IDEFo project information in two project files. You
can use the file name option to tell SAtoolII the name of the project you want it to immediately
load. SAtoolII will then load the two data files (project-nanie.esm and project-name.drm) for
that project. Setting this option works the same as choosing the Load Project selection on the
PROJECT menu.

E.2.3.4 Foreground and Background Color Each window used by SAtoolII has a fore-
ground and background color. SAtoolII uses the background color for the background of a window
and the foreground color for any text or drawings placed in the window. Setting the foreground
and background cptions allows you to specify color& other than the default colors for the window
backgrounds and foregrounds of SAtoolII.

E.2.3.5 Drawing Font 'Because SAtoolII uses the X Window System for its window
and graphics features, it also has available to it over 100 different X font styles. SAtoolII makes
several of these font styles available to you. Setting the font option works the same as choosing a
font from the Drawing Font selection in the OPTIONS menu.

E.2.3.6 Usage Summary SAtoolII displays a command line usage summary any time
the -h or -help option is used or if an unknown option is used. In either case, the execution of
SAtoolII is always terminated.

E.2.3.7 Ifelp Level SAtoolII offers a number of help levels to tailor its built-in help
messages to the needs of the user. The help level option works the same as choosing a help level
number from the Help Level selection in the OPTIONS menu.

E.2.3.8 Drawing Line Thickness SAtooliI offers several different line thicknesses for
the lines used for figures in a drawing window. The line option works the same as choosing a line
thickness from the Line Thickness selection in the OPTIONS menu.

E-5

E.3 A GUIDED TOUR

E.3.1 Introduction This section walks you through the basics of SAtoolII. The tour is de-
signed to give you hands on experience immediately. You learn how to use some of the tools and,
at the same time, how to give some simple commands and responses to the acknowledge windows,
menus, confirm windows, and dialog boxes that appear on the screen.

When you finish this section you will be able to create, modify, save, and load an IDEF0
project using SAtoolII. Note that the word click is used frequently throug! Dut this manual. This
refers to pressing and releasing a mouse button.

E.3.2 The Main Screen In the GETTING STARTED section you learned how to execute
SAtoollI either on your computer or remotely. Follow the steps in that section at this time to get
SAtoolIH started.

Figure E.1 shows the main screen face of SAtoolII. This same screen face should be in a
window on your display. The main screen has the following parts:

" Title Window. The title window is located at the top of the main screen and identifies the
program as SAtoolII.

" Help Window. The help window is located just below the title window. The help window
will contain a short message explaining the use or function of the menu, object, or tool you
selected most recently. The help window uses a larger acknowledge window for help messages
if you raise the Help Level for SAtoollI.

" Main Menu Window. The main menu window is located just below the help window. It
contains the names of pull-down menus that list commands that you can give SAtoolII.

" Objects Window. The objects window is located on the left side of the main screen just below
the help window. It contains a button for each of the IDEFo objects that you can place in a
.iagram.

" Tools Window. The tools window is located on the left side of the main screen below the
objects window. The tools window contains a button for each tool that you can use to place
or modify an IDEFo object in a diagram.

" Drawing Window. The drawing window is the large central work area for SAtoolII. This is
where you will create and modify a diagram in an IDEF0 project. In the drawing window you
will see the top and bottom headers of an IDEFO diagram. The drawing window is also where
SAtoolIl displays pop-up windows and various views of the diagrams making up a project.

* Cursor. The cursor changes form when you move from one window to the next to remind you
of the purpose of the window. In the case of the drawing window, the cursor is an arrow.

E-6

E-

4J

s--

'4-

CLa

- 7)
P-4L
- L4
o

a] t al 0) 0 0 L x 0)
0 4j 2 4j .-4 4') 0 Q) Qp Cfl

4' 0 -4 to 0 al to m 4 * 0 0) 4' 00 w .0 Cfl m 0 -4 -4 w 0- 'D I2I0 EJ W]
0 0J at I ;.~

Figure E.l. SAtoolll Main Screen Face

F,7

E.3.3 The Keyboard and Mouse SAtoolII accepts input from you through the keyboard and
through the mouse. On the keyboard, SAtoolII recognizes only the keys that normally appear on
a typewriter and the ESCAPE key. SAtoolII only uses the keyboard with a dialog box. When
a dialog box is displayed you can use the keyboard to enter characters and press RETURN for
SAtoolII to accept the characters or ESCAPE for SAtoolII to cancel the whole operation. SAtoollI
uses the mouse for all other user input. Moving the mouse also moves the cursor on the screen.
SAtoolII detects the cursor position and its movement. SAtoolII also detects when you press a
button on the mouse. Click the left button to choose any button or pull-down menu or menu
selection. Also use the left button to mark the start point of a drawing operation in the drawing
window. Click the right button to mark the completion or endpoint of a drawing operation. Click
the middle button to cancel the current drawing operation.

E.3.4 Using Objects and Tools When you begin SAtoolII, you have a project with no dia-
grams. Tile drawing window displays the IDEFO context diagram A-0. If you click on PROJECT
in the main menu and then click on Load Project, SAtoolII will prompt you for a project name,
load the project into memory, and display that project's context diagram in the drawing window.
To add an IDEFO object to the diagram, click on an object in the objects window. Next click on
the Add tool. SAtoolII now waits for you to position the cursor in the drawing window and click
to mark the location of the upper left corner of the object. If you decide that you want to later
change the object, click on the object button, then the Move tool button, and finally the object
itself in the drawing w:ndow. SAtoolII then will wait for you once again to mark the location of
the upper left corner of the object. If you make a mistake, click on the Undo tool and SAtoolII
will reverse the last drawing operation you just performed. Refer to the Objects and Tools section
for more information.

E.3.5 Creating and Viewing a Project SAtoollI is not a general-purpose paint program,
therefore it doesn't just let you pick an object and do whatever you want with it in the drawing
window. It knows enough about IDEF 0 to guide you in using the objects and tools properly to
create IDEFO diagrams.

One example of this guidance is the Decompose tool. You can use this tool only with a box.
When you select the Box button followed by the Decompose tool, SAtoolII waits for you to select
a box in the current diagram. When you do, it replaces the diagram in the drawing window with
the diagram describing the contents of the decomposed box. This diagram will be empty if you
haven't decomposed the box yet. To return to the diagram that the box belongs to, click on tile
TAXI pull-down menu. Next, select Parent Diagram. SAtoolII will return the parent diagram to
the drawing window.

You can be assured that anytime SAtoolII changes the diagrams in the drawing window that
it has saved the contents of the current diagram in memory. To see this is true, click on VIEW in
the main menu and select Project. SAtoolII will display in one view, a scaled down form of all tile
diagrams currently in a project. Press any key or click any button to return to the single diagram
view.

E.3.6 Saving and Loading a Project To save the project you have been working on, click on
PROJECT in the main menu. Select Save Project if you already gave the project a name by using
New Projcct at the start of this session. Select Save Project As if you need to give the project
a name or if you want to save the project you now have in memory under a different file name.
SAtool1I will either ask you to confirm the project's file name or ask you to supply one before it
continues the save operation. In either case you can cancel the save by pressing ESCAPE in the
dialog window or clicking on no or cancel in the confirm window.

E-8

To load a project, click on PROJECT in the main menu and select Load Project. SAtoolII
will then ask you for the name of the project. If you don't remember or if SAtoolIl later says it
can't find it, click on PROJECT again and use Show Directory and Change Directory to find out
what your project is called and where it is stored at.

CAUTION: When SAtoolII loads a project, it destroys the project diagrams currently in
memory. You can reload the project, later if you have savei it, but it will be gone from memory
as soon as you load another project. Don't worry too much, though. SAtoollI will ask for a
confirmation from you before it destroys the project in memory.

E.3.7 Error Handling Whenever SAtoolII detects an error, it will display an acknowledge
window containing an error message. If the error is not serious, SAtoolIl will just wait for you to
press a key or click a button to continue. If the error is serious, SatoolIl will display a confirm
window after you press a key or click a button. In the confirm window SAtoolII will ask if you want
to continue the session or let the error go to the operating system and abort the program. When a
confirm window appears for a serious error, your best move is to not abort the program. Select NO
and then immediately try to save your project and exit SAtoolII. SAtoolII keeps track in an error
file of any errors that occurred in the current session. Check this file after you exit SAtoollI if a
serious error occurs. If will give you a better idea of what happened and what you can do about it.

E.3.8 Exiting SAtoolII To exit SAtoolIl, first save your current project. Then click on
PROJECT in the main menu and select Quit. Before exiting the program, SAtoolII will once again
ask you if you want to save the project that is in memory and perform that task for before it
terminates.

E.3.9 Summary This section walked you through the basics of SAtoollI. In this section you
learned how to:

* Start SAtoolII

" Identify different parts of the main screen

* Use the keyboard and mouse

" Use the objects and tools

* Create and view a project

" Save and load a project

" Exit SAtoolII

To print the contents of a diagram or project refer to the section on PRINTING A WINDOW.

E-9

E.4 OBJECTS AND TOOLS

E.4.1 Introduction This section describes the objects in the objects window and the tools
in the tools window that you use together to create and modify diagrams. To use a tool with a
specific object you must first click on the object button and then on the tool button. After that,
any subsequent clicks on a tool button will use that tool with the most recently designated object.

E.4.2 The Objects SAtoolII is an IDEFO project editor. It was designed to supply you with
a familiar IDEFo environment to work in; hence, the purpose of the IDEF0 objects in the objects
window. Below is a description of each of the objects.

E.4.2.1 Box A box represents an activity on an IDEFO diagram. Along with its
location in a diagram and its name, it also has many activity attributes connected with it. After
clicking on DICTIONARY in the main menu, you can read these attributes by selecting Display
Activity Entry or change these attributes by selecting Change Activity Field.

E.4.2.2 FEO An FEO, or for exposition only, is a special effect feature you can place
in a diagram. It is not part of a diagram, but is used to illustrate the purpose of a particular
action taken on the diagram. SAtoollf implements this as a character phrase that you can add to
a diagram.

E.4.2.3 Footnote A footnote is the same as a note except that you can use it instead
of a note if crowding in part of the diagram forces you to move the text to another location.

E.4.2.4 Label A label is how you can designate what specific data that a line segment
represents. Try to position the label so the line segment it refers to is obvious. If this is not possible
because of crowding in the diagram, use a squiggle to show the relationship between a label and a
line segment.

E.4.2.5 Line Segment A line segment, in connection with other line segments and
terminators, shows the flow of data from one box to the next. This data is identified by a label
related to the line segment. SAtoolII restricts a line segment to lie either vertically or horizontally
on a diagram. This means that the angle between two line segments is 90 degrees or 180 degrees.
One or more line segments connected by terminators represent a data element. Along with the
locations of these line segments in a diagram, the data element they represent has many attributes
connected with it. After clicking on DICTIONARY in the main menu, you can read these attributes
by selecting Display Data Element Entry or change these attributes by selecting Change Data
Element Field.

E.4.2.6 Metanote A metanote is not part of the IDEF0 description in a diagram.
Instead it is observations about the diagram, such as the way it is laid out or the choice of label or
box names.

E.4.2. 7 Note A note lets you put nongraphical information of an analysis into a dia-
gram. If the object that the note refers to is not obvious, use a squiggle to clarify the situation

E.4.2.8 Squiggle A squiggle is a device used when crowding on part of a diagram
causes poor readability. You use it to relate a label to a line segment or a footnote marker to a line
segment when you cannot place the label close enough to the object. A label has two endpoints,
one near the label or footnote marker and one near the line segment.

E-10

E.4.2.9 Terminator A terminator is a symbol that you attach to the connector. The
other end of the connector may be attached to a line segment, a box, or another terminator. A
terminator identifies where the data is going and possibly something about where it came from.
SAtoollI supplies nine kinds of terminators: arrow, boundary arrow, tunnel arrow, to-all, from-all,
simple turn, junctor, dot, and null (stands for no terminator). Each time you ask SAtoollI to add
a terminator to a diagram it will display the list terminators and ask you to choose from it.

E.4.2.1O Connector A connector is not an IDEF0 object, at least not a visible one.
It allows SAtoollI to take the tinker toy approach to building a diagram. It also allows SAtoolll
to easily move multiple objects on a diagram by moving only the connectors. All connections
between line segments, boxes, and terminators require a connector in between them. SAtoollI
automatically puts in connectors for you. However, you can ask SAtoollI to move connectors to
change the location of line segment connections, especially on the edges of boxes.

E.4.3 The Tools You can use a tool from the tools window to perform a drawing operation
with an object from the objects window. Remember that SAtoolIl thinks you want to use a tool
with the object of the object button you most recently clicked on unless you click on another object
button before clicking on the tool. Below is a description of what you can do with tile tools.

E.4.3.1 Undo The undo tool reverses the most recent drawing operation that you just
had SAtoolIl perform with an object. If you make a drawing mistake and you want SAtoollI to
undo it, this is the tool to use. As soon as you click on undo, the previous operation is reversed.

E.4.3.2 Add This tool adds an object to a diagram. After selecting the add tool,
SAtoollI will wait for you to mark the position of the upper left corner of the object. If you decide
later that you want to place the object in a different position, use the move tool.

E..3.3 Move This tool moves an object from one location in a diagram to another.
SAtoollI thinks you want to move the type of object you most recently highlighted in the objects
window unless ou first click on another object button. After clicking on the move button, SAtoollI
will wait for you to indicate which object in the diagram that you want to move. It then will wait
for you to mark the new position of the upper left corner of the object.

E.4.3.4 Delete This tool removes an object from a diagram. After selecting the delete
tool, SAtoolII will wait for you to indicate which object in the diagram you want to delete. This is
a very powerful tool, but it is also very particular. SAtoolII will not let you use this tool to leave
behind an IDEFO disaster. Consequently, deleting one object may mean deleting several objects
with it to keep the diagram in order. Before SAtoolIl takes such action if will ask for a confirmation
from you on what it plans to do. If you use this tool to erase text, the font name setting should be
the same as when the text was drawn. If the drawing window has parts of objects left in it after a
delete operation, click on the Redisplay selection in the DIAGRAM menu to clean up tile drawing
window.

E.j.3.5 Change Text This tool lets you change the text in a note, footnote, metanote,
or an FEO. After selecting the tool, SAtoolll will wait for you to indicate which object. in the
diagram you want to change the text of. For SAtoolII to properly erase the old text, the font name
setting should be the same as when the text was drawn. If not, click on the Redisplay selection in
the DIAGRAM menu to clean up the drawing window.

E-11

E.4.3.6 Decompose You can use this tool on a box only. After selecting the decompose
tool, SAtoolII will wait for you to indicate which box in the diagram you want to decompose. This
tool causes SAtoolII to put the current diagram aside and bring up the diagram showing the
decomposition of the selected box. This diagram will be empty if you haven't decomposed the box
yet. To return to the diagram where the box for the decomposition was located, click on the Parent
Diagram selection in the TAXI menu.

E.4.4 Summary This section described the objects in the objects window and the tools in
the tools window. In this section you learned how to use an object and tool from these windows to
create and modify diagrams.

E-12

E.5 MAIN SCREEN MENUS

E.5.1 Introduction SAtoolII has seven pull-down menus on the main screen: PROJECT,
DIAGRAM, DICTIONARY, TAXI, VIEW, OPTIONS, and OTHER. To pull down a menu and
display its contents, click on the menu button. As you move the cursor within the menu, SAtoollI
highlights the command under the cursor. To select the command, position the cursor over it
until it is highlighted, then click on it. If you click outside the menu, the menu disappears and no
command is selected.

Many of the commands you select in the pull-down menus will bring up dialog boxes, ac-
knowledge windows, confirm windows, or other menus. To cancel any of these commands, do the
following based on the type of window in use:

" Menu - click outside the menu

" Confirm window - click on the cancel button

" Dialog Box - press the ESCAPE key

" Acknowledge window - press any button or key because no action is ever performed

Anytime an error occurs, SAtoollI will display the error information in an acknowledge win-
dow. This type of window has no effect on the state of the project, but it will stay ol the screen
until you either press a key or click a button.

The rest of this section provides a detailed description of the commands listed in each pull-
down menu.

E.5.2 PROJECT Menu The project menu supplies you with a list of commands you can
use on an IDEFo project.

E.5.2.1 New Project The new project command erases any project information in
memory and uses a dialog box to prompt you for a new project name. If a project is already in
memory, it will first use a confirm window to ask if you want to destroy the project in memory
only.

E.5.2.2 Load Project The load project command uses a dialog box to prompt you for
the name of the project to load. If a project is already in memory, it will also use a confirm window
to ask if you want to destroy that project in memory only. SAtoollI loads project information from
two separate files, a file with essential model project information (project-name.esm) and a file with
drawing model project information (project.name.drti).

E.5.2.3 Save Project As The save project as command uses a dialog box to prompt
you for the name that you want to save a project under. If the project already exists it will use
a confirm window to ask you if you want to replace the project. SAtoolIl saves a project in two
separate files, a file with essential model project information (project-name.esmn) and a file with
drawing model project information (projectnarne.drmn).

E.5.2.4 Save Project The save project command saves the information in memory
into the project files with the current project name. If you haven't designated a project name, it
will use a dialog box to prompt you for a name. SAtoolII saves a project in two separate files, a file
with essential model project information (project-namne.esm) and a file with drawing model project
information (project-name.drm).

E-13

E.5.2.5 Print Project The print project command uses an acknowledge window to te!!
you how to print the diagrams of a project.

E.5.2.6 Lay Out Project The lay out project command creates all the diagrams of a
project completely from the essential model information contained in the project.name.esm file.

E.5.2. 7 Derive Project The derive project command derives the contents of the essen-
tial model and data dictionary completely from the drawing model (diagram) information in the
project-name.drm file.

E.5.2.8 Show Directory The show directory command uses an acknowledge window
to display the names of the projects in the current default directory.

E.5.2.9 Change Directory The change directory command uses a dialog window to
prompt you for the name of a new default directory.

E.5.2.10 Quit The quit command ends the SAtoollI program. Before ending, SAtoollI
uses a confirm window to ask if you want to save the project in memory and uses a dialog box to
prompt for the project name.

E.5.3 DIAGRAM Menu The diagram menu supplies you with a list of commands you can
use on an IDEFO diagram.

E.5.3.1 Redisplay The redisplay command clears the drawing window and redraws all
the diagram contents.

E.5.3.2 Print Diagram The print diagram command uses an acknowledge window to
tell you how to print a diagram.

E.5.3.3 Clear Diagram The clear diagram command is a convenient way to remove
all the objects from a diagram. SAtoolIl will use a confirm window before its takes any action. It
will clear a diagram only if you agree and the diagram has no boxes with decomposed diagrams
associated with them.

E.5.4 DICTIONARY Menu The dictionary menu supplies you with a list of commands you
can use on activity and data element entries in a data dictionary.

E.5.4.1 Show Activity Entry The show activity entry command waits for you to click
on a specific box in the current diagram and then displays all the data dictionary fields of the
activity entry corresponding to the box. Just press any key or click any button to return to the
current diagram.

E.5.4.2 Edit Activity Field The edit activity field command waits for you to click on
a specific box in the current diagram. It then uses a submenu to list all the field names of the
activity entry corresponding to the box. If you click on one of the submenu entries, SAtoolll will
use a dialog box to show you the current field contents and allow you to change the contents. The
submenu contains the following selections: Name, Activity Number, Description, Version, Changes,
Date, Author, Reference, Calls, C Number, and DRE.

E-14

E.5.4.3 Show Data Entry The show data entry command waits for you to click ol a
specific line segment in the current diagram. It then displays all the data dictionary fields of the
data element entry corresponding to the line segment. Just press any key or click any button to
return to the current diagram.

E.5.4.4 Edit Data Field The edit data field command waits for you to click on a
specific line segment in the current diagram. It then uses a submenu to list all the field names
of the data element entry corresponding to the line segment. If you click on one of the submenu
entries, SAtoolII will use a dialog box to show you the current field contents and allow you to
change the contents. The submenu contains the following selections: Name, Description, Version,
Changes, Date, Author, Reference, Data Type, Minimum, Maximum, Range, and Values.

E.5.5 TAXI Menu The taxi menu supplies you with a list of commands you call use to
move to other diagrams in an IDEF0 project.

E.5.5.1 Context Diagram The context diagram command brings up the context dia-
gram (the topmost project diagram) in the drawing window.

E.5.5.2 Parent Diagram The parent diagram command brings up the diagram con-
taining the box (activity) that the current diagram was decomposed from.

E.5.5.3 Named Diagram The named diagram command uses a dialog box to prompt
for a box (activity) name and brings the decomposition diagram for that box up in the drawing
window if the diagram already exists.

E.5.6 VIEW Menu The view menu supplies you with a list of commands you can use to
bring up different views of the diagrams in an IDEFo project other than the usual single diagram
view.

E.5.6.1 Project The Project command brings up every diagram, in a scaled down
form, that is in the project. Press any key or click any button to return to the single diagram view.

E.5.6.2 Path From Context The path from context command brings up every dia-
grdm, in a scaled down form, that is in the decomposition path from the context diagram through
to the current diagram. Press any key or click any button to return to the single diagram view.

E.5.6.3 Children The children command brings up all the diagrams, in a scaled down
form, one decomposition level below the current diagram. Press any key or click any button to
return to the single diagram view.

E. 5.7 OPTIONS Menu The options menu supplies you with a list of commands you can use
to change user-defineable options referenced by SAtoollI to determine the user interface appearance
and degree of service.

E.5. 7.1 Grid The grid command lets you bring up a X/Y grid in tile drawing window
to help you in positioning objects. The command uses a menu so you can select on or off. The
default value is off.

E.5.7.2 Drawing Font The drawing font command uses a submenu to display the
names of X Window System fonts that you can uses for the text in the diagrams in the drawing

E-15

window. The font name you choose stays in effect for the current session until you change it to
something else. The default value is "9x15".

E.5.7.3 Line Thickness The line thickness command uses a submenu to display a
choice of line thicknesses for the objects drawn in a diagram in the drawing window. This line
thickness stays in effect for the current sessions until you change it to something else. The default
value is 1.

E.5.7.4 Line Rerouting The line rerouting command lets you tell SAtoollI if you want
it to automatically reroute any remaining line segments in the current diagram following an add,
move, or delete tool operation. The purpose of the line rerouting is to ensure lines do not pass
through boxes and that they take the most direct route possible within the restriction of the 90
degree and 180 degree rule. The command uses a submenu for you to select on or off from. The
default value if off.

E.5.7.5 Dimensions The dimensions command lets you tell SAtoolIl how you want
the diagrams in the drawing window displayed, either in two-dimensions or three-dimensions. The
command uses a submenu for you to select 2-D or 3-D from. The default value is 2-D.

E.5.7.6 Synlax Observance The syntax observance command lets you tell SAtoollI if
you want it to check the IDEF0 syntax of the current diagram in the drawing window every time
you perform a drawing operation. The command uses a submenu for you to select yes or no from.
The default value is no.

E.5. 7.7 Help Level The help level command lets you tell SAtoolII the level ef help you
want it to give you. This affects the amount of help information that appears on the screen each
time you click on an object, tool, or menu button. The default value is 0, which means that only
the help window is used to display help information. If you use any level greater than 0, SAtoolll
uses an acknowledge window to display the help information. The command uses a submenu for
you to select a level from.

E.5.7.8 Warning Beep The warning beep command lets you tell SAtoollI if you want
a warning beep to sound each time SatoolIl displays an acknowledge window. The command uses
a submenu for you to select yes or no from. The default value is no.

E.5.8 OTIlER Menu The other menu supplies you with a list of commands you can use to
select other miscellaneous functions offered by SAtoollI.

E.5.8.1 Check Syntaz The check syntax command tells SAtoollI to check the IDEFo
syntax of the current project and report the errors on the screen. This syntax checking process
involves asserting facts about the project, applying a rule base to the facts, and then listing any
errors. The command uses a confirm window to ask if you are sure you want to check the syntax.

E.5.8.2 Save FPT The save FPT command saves any facing page text for t' dia-
grams in the current project into a file with a project-name.fpt name. The command uses a confirm
window to ask if you are sure you want to save the facing page text.

E.5.8.3 Show Stats The show stats command displays accounting figure; showing how
long the current session has been running. It also shows, for the current session, what buttons and
menus you have selected and how many times you have selected them.

E-16

E.5.8.4 User Assessment The user assessment command uses a dialog bVx to ask you
to enter information on program problems ur suggestions for program improvement. - .a3olll saves
your input into a file with a project-name.usr name.

E.5.8.5 About SAiooIII The about SatoollI command uses an acknowvledge window to
display a short history and purpose for SAtoolIl.

&-17

E.6 PRINTING A WINDOW

E.6.1 Introduction SAtoollI currently does not have a built-in capability to send a diagram
or project to a printer or even create a file that can later be sent to a printer. But you can still
easily obtain a printed copy of the IDEF0 diagrams that you created using SAtoollI. This section
briefly describes the X client programs used to capture a window and print it. It also tells you how
to use these programs to obtain a laser printer copy of an IDEF0 diagram created using SAtoolII.
All the SAtoolIl screen and menu illustrations in this manual were obtained using this method.

E.6.2 X Clients for Window Capturing and Printing Below is a short desrription of the
four X client programs that are used in capturing (dumping) and printing X windows.

E.6.2.1 xwd : X Window Dump Program This program stores a window image in a
specially formatted X Window dump file.

Program Command Line Options:

-help Shovs 'Usage:' command syntax
-nobdrs Pixel border is not included in window dump
-out <file> Output file name; default is standard out
-root Makes a dump of the entire root window

E.6.2.2 xpr : X Window Dump Translator Program This program translates all X
Window dump file into a printable output file.

Program Command Line Options:

-scale <scale> Scales bits; 3 changes IXI to 3X3
-height <inches> Maximum height of window on page
-width <inches> Maximum width of window on page
-left <inches> Left margin otherwise image is centered
-top <inches> Top margin otherwise image is centered
-landscape Prints image in landscape mode; default matches

window longest side to paper longest side
-portrait Prints image in portrait mode; see above
-rv Reverses foreground and background colors
-compact Compresses white pixels on PostScript only
-output <file> Output file name; default is standard out
-append <file> Appends image to previously produced xpr file
-noff Appended window appears on sane page as first
-split <n> Splits window into several pages
-device <device> Specifies the device format to use for output.

For: LN03 -device ln03
LAiO0 -device lalO0
PostScript -device ps
IBM PP3812 -device pp
Apple LaserWriter -device lw or ps

Special Notes:

" The LN03 can handle windows up to 2/3 of the screen size

" LA100 pictures are always in portrait mode with no scaling

" Postscript cannot handle -append, -noff, or -split options

E-18

E.6.2.3 xdpr : X Window Dump, Translate, and Print Program This program runs
the commands xwd, xpr, and lpr(1) to dump an X Window to a file, translate the file contents to
a printable form, and send the translated file to a laser printer.

Program Command Line Options:

-filename Specifies existing file containing xwd dump
-P<printer> Specifies name of printer to be used
-device <device> Specifies type of printer; see xpr options
-help Displays list of options for xdpr

(All other options are passed to xwd, xpr, and lpr(1))

E.6.2.4 -wud : X Window Undump Program This program undumps an X Window
dump file into the coordinates of the original window

Command Line Options:

-help Displays list of options
-in <file> Specifies input file; default is standard input
-inverse Undumps file in reverse video; monochrome dumps only

E.6.3 Printing an IDEFo Diagram and Project Follow these steps to create a printed copy
of an IDEFO diagram that was crcated using SAtoolIl.

Note: If you already have SAtoolIl running, skip to step 6.

1. Have an X Window Manager running on your workstation and have two xterm windows ,n
the screen.

2. In the first xterm window enter

SAtoolIlI

3. When the window outline appears on the screen, pos"ion the SAtoollI window so that you
will have access to the second xterm window.

4. Click the left mouse button to mark the position of the SAtoolII window outline and bring
up the SAtoolIl program.

5. Use SAtoolHI to create an IDEF0 diagram or load a project into SAtoollI using the Load
Project selection in the PROJECT menu.

6. Bring up in the drawing window of SAtoolII the IDEFO diagram that you want a printed
copy of.

7. Move the cursor into the second xterm window and enter

xwd > diagram-nant xdmp

where diagram.name is some meaningful name for the IDEFO diagram. The xwd program
copies the IDEFO diagram into an X Window dump file. When the xwd program starts up,
the cursor will turn to a cross-hair.

E- 19

8. Move the cross-hair inside the SAtoolII drawing window and press the left mouse button.
The xwd program will beep once to stay it started storing the window in a file and beep twice
when it is done.

9. Move the cursor back into the second xterm window and enter

xpr -device ps < diagram-name.xdmp -output diagramname.ps

The xpr program translates the IDEFo diagram file from the X Window format to a PostScript
format and puts the translated information into a new file.

10. With the cursor still in the second xterm window, enter

lpr -Pprinter-name diagram-name.ps

The lpr program sends the IDEFo diagram file to the laser printer whose name is printer-name.
The printing process takes about 10 minutes.

To get printed copies of all the diagrams in a project, follow steps 6 through 10 for each
diagram.

E-20

Appendix F. SAtoolI Source Code Information

F.1 Introduction

The names and contents of the SAtoolIlI Ada source code files are listed below. The source
code files for SAtoollI are maintained by the Department of Electrical and Computer Engineering
at the Air Force Institute of Technology. Information on the Machine-independent Ada Graphical
Support Environment (MAGSE) source files used by SAtoolIl is in Appendix C.

F.2 Generic Manager and Environment Types File Names and Contents

es.genev.a MultipleGenericObjectManager package spec and
body plus EnvironmentTypes package
(spec only)

F.3 Drawing Model File Names and Contents

drawable.a DrawableClass package spec and body
dr-box.a Box-Class package spec and body
dr-feo.a FEOClass package spec and body
dr-footnote.a Footnote-Class package spec and body
dr-label.a LabelClars package spec and body
dr-line.a Line-Class package spec and body
dr-metarote.a MetanotClass package spec and body
dr-note.a Note-Class package spec and body
drsquiggle.a Squiggle-Class package spec and body
dr-stub.a ConnectorStubClass package spec and body
dr-terminator.a Terminator-Class package spec and body
dr-diagram.a Diagram-Class package spec and body
dr-project.a Project-Class package spec and body

F.,4 Drawing Model Demonstration File Names and Contents

dr-example.a Example-Project package spec and body
dr-title-screen.a Title-Screen package spec and body
dr.helpscreen.a Help-Screen package spec and body
drdrawing.screen.a Drawing-Screen package spec and body
dr-main-menu-screen.a MainMenuScreen package spec and body
dr-objects.screen.a Objects-Screen package spec and body
dr-tools-screen.a Tools-Screen package spec and body
dr-driver.a Drawing model demonstration program

F.5 Essential Model File Names and Contents

es-proj.a Project-Class package (spec only) plus
Project-Manager package spec and body

es-activ.a ActivityeClazs package (spec only) plus
Activity-Manager package spec and body

es-datel.a DataElementClass package (spec only) plus

F-i

DataElementManager package spec and body
es-hista.a HistoricalActivityClass package (spec

only) plus HistoricalActivitiyManager package

spsc and body
es-conof.a ConsistsOfRelationClass package (spec only) plus

ConsistsOfRelationManagor package spec and body
esICOM.a ICOMRelationClass package (spec only) plus

ICOMRelationManager package spec and body
es-calls.a Calls-Class package (spec only) plus

Calls-Manager package spec and body
es-factu.a EssentialFactUtilities package spec and body
es-clpwm.a ClipsWorkingMemoryInterface package spec and body
es-esmio.a EssentialI0 package spec and body
es-mnuio.a MenuIO package spec and body
es-main.a Essential Model Demonstration Program

F.6 SAtoollI Interface Prototype File Names and Contents

sa-title-vindos.a Title-Window package spec and body

sa.help-window.a Help-Window package spec and body
sa-diagram.a Diagram package spec and body
sa.drawing.indow.a Drawing-Window package spec and body
sa-main-menu-window.a MainMenuWindow package spec and body
sa.objectswindow.a Objects-Window package spec and body
sa-tools-window.a Tools-Window package spec and body
sa-prototype.a SAtoolII interface prototype main procedure

F-2

Appendix G. Commonly Asked Ada and X Window System Questions

G.1 Introduction

This appendix contains answers to some common Ada and X Window System questions.
These answers were compiled from personal experience in implementing SAtoollI in Ada with the
X Window System, from information in X Window System brochures, and from various UNIX
cornp.windows.x and comp.lang.ada newsgroup postings.

G.2 Ada Questions and Answers

G.2.1 Why do I get syntaz errors on the pragma interface statements in the SAIC Ada
code? The syntax errors are occurring in the x.int.a file. The syntax used by SAIC for the
pragma interface is not the syntax that the Verdix Ada compiler expects. To get rid of the syntax
errors, change each 3-parameter pragma interface statements to two 2-parameter statements. Sec
the example below where AdaFunction.Name and C.Function.Name are character strings.

Wrong syntax:

pragma interface (C, AdaFunctionName, CFunctionName);

Correct syntax:

pragma interface (C, AdaFunctionName);
pragma interface-name (AdaFunctionName, CFunctionName);

G.2.2 When using the Verdix Ada compiler on a Sun workstation why do I sometimes gel
a "write failed" error? The error message probably reads "/:write failed, file system is full". This
means that the /tmp directory on the hard disk has run out of file space. Try deleting all the files
in /tmp with your userid and compile again. Verdix Ada usually cleans up these files at the end of
compilation, but files can be left stranded in the /tmp directory if the compiler aborts. If deleting
files in /tmp doesn't work, talk to the system admininstrator about increasing the /tmp file space
allocation.

G.2.3 When using the Verdix Ada compiler on a Sun workstation why do I sometimes get a
"cannot allocate more memory" error? What has probably happened is that tile operating system
has run out of swap space. One possible solution is to remove (kill) some of the other processes
running on the machine. This will free up some of the swap space. Another possible solution is to
have the system administrator increase the swap space allocation. This, in essence, increaseb the
virtual memory of the computer.

G.2.4 When using the Verdiz Ada compiler why do I get the error message "Spec of -s not
found"? The error message probably reads "a.ld error: spec of-s not found in searched libraries".
This error probably came up after you entered 'ada -M mainprocedure.a" to create an executable
program. Verdix Ada expects the main executable procedure to have the name main-procedure.
The main-procedure part of the file name can be any valid Ada variable name. It must also be the
name of a procedure in the main-procedure.a file.

G-1

G.2.5 How do I link the X Window System xlib into my Ada program? When you link an X
client written in Ada with xlib you must have pragmas in the Ada code relating the Ada function
or procedure names for xlib functions to C functions in the xlib library. One way to do this is using
the Ada bindings to the X Window System developed by SAIC. Almost all the pragmas in the
SAIC bindings are for functions in the X Window System; however five of them are for bit-level C
utility functions that are in files that come with the SAIC bindings. You can make these functions
easier to use when compiling and linking them by combining all five function files into one utilities.c
file or some similar name.

Before doing any linking, all the files you plan to link together must have already been
individually compiled into object code. This includes your X client application program, the xlib
library, the SAIC Ada bindings, and the utilities.c file. The xlib library has already been compiled
for you and the SAIC Ada bindings and utilities.c file may have already been compiled, too. (Refer
to Appendix A if this is not the case.) So, you need to compile only your X client program. Now
for the answer to your question. You can link your X ci:ent program, xlib, and utilities functions
together into one executable program by doing the following:

a.ld yourmain-procedure-name /usr/X/libXli.a utilities.o

This link (load in UNIX terms) statement says that the xlib library is in a standard UNIX
directory location and that the utilities object file is in your current directory. When the linking
completes, your X client executable program will be in the a.out file.

G.3 General X Window System Questions and Answers

G.3.1 Where can I obtain X Window System version 11 release 4 source code files? The
MIT Software Center is shipping X11R4 on four 1600bpi half-inch tapes. Call the X Ilotline at.
(617) 258-8330 for prerecorded ordering information and a good product description.

Integrated Computer Solutions, Inc., ships X11R4 on half-inch, quarter-inch, and TK50 for-
mats. Call 617-547-0510 for ordering information.

The Free Software Foundation (617-876-3296) sells X11R4 on half-inch tapes and on QIC-24
cartridges.

Yaser Doleh (doleh@math-cs.kent.EDU; P.O. Box 1301, Kent, 01 44240) is making X11R4
available on ItP format tapes, 16 track, and Sun cartridges.

Virtual Technologies (703-430-9247) provides the entire X11R4 compressed source release on
a single QIC-24 quarter-inch cartridge and also on 1.2meg or 1.44 meg floppies upon request.

Note that some distributions are media-only and do not include documents.

G.3.2 Where and how can I obtain other X Window System client source code files? You can
ftp the X Window System source and other source files from the contrib directory on expo.lcs.mit.cdu
at MIT. To obtain these files, do the following:

1. ftp - T-,is starts up the ftp program from the UNIX prompt.

2. open expo.lcs.mit.edu - This opens the network connection to the remote computer.

3. Enter user name of anonymous - Do this at the user name prompt.

4. Enter your user id as the password - Do this at the password prompt.

5. binary - This puts ftp in binary mode versus ASCII mode.

G-2

6. get file-name.tar.Z - This starts the file transfer from the remote computer to your computer.
It may take a few minutes if the file is thousands of bytes in size.

7. close - This closes the network connection to the remote computer.

8. quit - This takes you out of ftp and returns you to UNIX.

9. uncompress file-name.tar.Z - This uncompresses the tar file

10. tar -xvf file-name.tar - This extracts the tar file into directories and files.

Here are some other ftp sites and the software available:

gatekeeper.dec.com 16.1.0.2 pub/X1 1/R4
mordred.cs.purdue.edu 128.10.2.2 pub/X11/R4
giza.cis.ohio-state.edu 128.146.8.61 pub/X.V1 1R4
uunet.uu.net 192.48.96.2 X/R4
crl.dec.com 192.58.206.2 pub/X11/R4
brazos.rice.edu 128.42.42.2 pub/X1 1R3/core.sr
chiaron.mit.edu 18.80.0.13 perl+patclies, xdvi
cs.purdue.edu 128.10.2.1 rcs,xspee
j.cc.purdue.edu 128.210.0.3 comp.sources
nl.cs.cmu.edu 128.2.222.56 Fuzzy Pixmap 0.84
sliambhala.berkeley.edu 128.32.132.54 xrn
terminator.cc.umich.edu 35.1.33.8 xscheme, msdos, atari
cayuga.es.rochester.edu 192.5.53.209 Xfig,LaTeX styles,Jove
cfdl.larc.nasa.gov 128.155.24.55 gnu, rfc, sun, X, ucb, odu
cheddar.cs.wisc.edu 128.105.2.113 Common Lisp stuff, X11 fonts
cs.orst.edu 128.193.32.1 Xlisp
dinorall.wustl.edu 128.252.118.101 Xl 1R3/corc.src
expo.lcs.mit.edu 18.30.0.212 a home of X, portable bitm-aps
gatekeeper.dec.com 128.45.9.52 X11,etc...
giza.cis.ohio-state.edu 128.146.8.61 miscellaneous similar to expo
hiotel.cis.ksu.edu 129.130.10.12 XBBS, msdos, U3G toolkit
icarus.riacs.edu 128.102.64.1 SLIP, chikpt, macdump, Xpostit
interviews.stanford.edu 36.22.0.175 InterViews X toolkit
jpl-mil.jpl.nasa.gov 128.149.1.101 Tex, Mac, Gnu, Xv11R2,3
m9-520-l.mit.edu 18.80.0.45 Xim (X image viewer)
mordred.cs.purdue.edu 128.10.2.2 X11113
polyslo.calpoly.edu 129.65.17.1 src/spaceout.tar.Z for X11
scam.berkeley.edu 128.32.138.1 X sources, etc.
sun.soe.clarkson.edu 128.153.12.3 X11 fonts, TeX
think.com 10.4.0.6 X11.2 Interviews 3d
vaxa.isi.edu 128.9.0.33 X, db
wlieaties.ai.mit.edu 128.52.32.13 tXll
xanth.cs.odu.edu 128.82.8.1 comp.srcs

G.3.3 Where can I find books and articles on X that are good for beginners? Ken Lee of
the DEC Western Software Laboratory (klee~wsl.dec.com) regularly posts to comp.windows.x and
ba.windows.x a list of reference books and articles on X and X programming. Here is an unordered
sct of useful reference books and tutorials, most of which appear on that list (comments are gathe(red
from a variety of places and are unattnibutable]:

G-3

Jones, Oliver, "Introduction to the X Window System," Prentice Hall, 1989. A fine introduc-
tion to programming with Xlib; fairly good background to the X protocol; nice discussion of Xlib,
the X library. ISBN 0-13-499997-5.

Young, Doug. "The X Window System: Applications and Programming with Xt (Motif
Version)," Prentice Hall, 1989 (ISBN 0-13-497074-8). The excellent tutorial "X Window Systems
Programming and Applications with Xt," (ISBN 0-13-972167-3) updated for Motif. [The examples
from the Motif version are available on expo in ftp/contrib/young.motif.tar.Z]

Scheifler, Robert, James Gettys, and Ron Newman, "X Window System: C Library and
Protocol Reference," Digital Press, 1988. The bible on X. This is the most complete published
description r 1" the X programming interface and X protocol. It should not be one's first book on
X, though. ISBN 1-55558-012-2. DP order number EY-6737F-DP.

Nye, Adrian, "Xlib Programming Manual, Volume 1" and "Xlib Reference Manual, Volume
2," O'Reilly and Associates, 1988. A superset of the MIT X documentation; the first volume is
a tutorial with broad coverage of Xlib, and the second contains reference pages for Xlib functions
and many useful reference appendices. ISBN 0-937175-26-9 (volume 1) and ISBN 0-937175-27-7
(volume 2).

Nye, Adrian, and Tim O'Reilly, "X Toolkit Programming Manual, Volume 4," O'Reilly and
Associates, 1989. The folks at O'Reilly give their comprehensive treatment to programming with
the MIT X11R3 Intrinsics; some information on X11R4 is included.

O'Reilly, Tim, ed., "X Toolkit Reference Manual, Volume 5," O'Reilly and Associates, 1989.
A professional reference manual for the MIT X11R3 Xt; some information on X11114 is included.

G.3.4 What do these X Window System abbreviations mean? The following are abbrevia-
tions often seen in X Window System literature.

Xt: The X Toolkit Intrinsics is a library layered on xlib which provides the functionality from
which the widget sets are built. An Xt-based program is an application which uses one of those
widget sets and which uses Intrinsics mechanisms to manipulate the widgets.

Xmu: The Xmu library is a collection of miscellaneous utility functions useful in building
various applications and widgets.

Xaw: The Athena Widget Set is the MIT-implemented sample widget set distributed with
Xll source since X11R2.

Xm: The OSF/Motif widget set is from the Open Software Foundation; binary kits are
available fiom many hardware vendors.

XUI: DEC's X-programmer's toolkit, including a widget set and a high- level widget descrip-
tion language, is being phased out.

Xhp (Xw): The Hewlett-Packard Widget Set was originally based on R2++, but several sets
of patches exist which bring it up to R3, as it is distributed on the X11R4 tapes.

G.3.5 How can I get an X Window System server on a PC? The following are good X
server sources:

Locus Computing (800-955-6287; CA: 213-670-6500; UK: +44 296 89911) has a server called
PC-Xsight which also appears in Acer's X terminal.

IP (800-752-0900) has the "LIP Accelerated X Window Display Server" (IP AXDS/PC; liP
part D2300B) which will run on any AT-class DOS machine with 640KB, MSDOS 3.1 or higher,
and the IP Intelligent Graphics Controller 10 card, to which the X11R3-based server is downloaded
(avoiding performance-limitations from PC RAM-size and processor speed).

G-4

Graphic Software Systems (GSS) (503-641-2200) makes PC-Xview, an MSDOS-based X server
which interfaces with PC/TCP Plus networking software from FTP Software and Excelan's LAN
WorkPlace for DOS. The server works with (a) 286, 386, 486 (b) EGA, VGA, DGIS displays. (c)
DOS 3.2 and above (d) Microsoft, Logitech, Mouse Systems Mice (e) 640k memory up to 16 MB
memory (the PC-Xview/16 is available for PCs with extended memory].

VisionWare's XVision is a Microsoft Windows-based X server which allows an IBM-compatible
PC or PS/2 to display X clients running on a networked computer at the same time as local DOS
programs. VisionWare is at 612-377-3627.

Integrated Inference Machines (714-978-6201 or -6776) is shipping X1 1/AT, al X server that
runs under MS-windows. The server converts an IBM-AT into an X terminal which can simulta-
neously run MS-DOS and Microsoft Windows applications.

Hummingbird Communications (Canada 416-470-1203) produces the IICL-eXceed and IICL-
eXceed Plus for EGA, VGA, and VGA+ controllers.

PC DECwindows a.k.a. the PC DECwindows Display Facility is al MS-DOS application
that turns your PC into an X11R3 terminal. It supports DECnet. Available from DEC.

Pericom's TeemTalk-X for IBM clones allows toggling between X and DOS.

G.3.6 Where can I obtain an X Window System paint/draw program? Here are some better-
known ones:

tgif is a 2-D drawing tool using only xlib. It is available on expo.

xpic is an object-oriented drawing program. It supports multiple font styles and sizes and
variable line widths; there are no rotations or zooms. xpic is quite suitable as al interactive front-
end to pic, though the xpic-format produced can be converted into PostScript. (The latest verbion
is oil the R4 contrib tape in clients/xpic.)

xfig is an object-oriented drawing program supporting compound objects. The text-handling
is limited. The xfig-format can be converted in PostScript or other formats. One version is on
the R4 contrib tape in clients/xfig; it is one of the several 'xfig' programs which several groups
independently developed parallel versions of from the R3 xfig.

idraw 2.5 supports numerous fonts and various line styles and arbitrary rotations. It supports
zoom, scroll, color draws, and fills.

dxpaint is a bitmap-oriented drawing program most like MacPaint; it's good for use by artists
but commonly held to be bad for drawing figures or drafting.

ArborText (313-996-3566) offers PubDraw, an X11-based drawing program, on Sun, lip and
Apollo workstations.

G.3.7 Where can I get a PostScript previewer for the X Window System? Here are some
suggested previewers:

xps is available from almost everywhere that the Xll contributed source can be found.
The version currently on expo is based on Crispin Goswell's PostScript interpreter with fixes and
speedups by John Myers and Barry Shein and an Xll driver by Terry Weissman. There are known
problems with fonts. Tile package is good for lowering the edit-print-edit cycle in experimenting
with particular PostScript effects.

Ghostscript is distributed by the Free Software Foundation (617-876-3296) and includes a
PostScript interpreter and a library of graphics primitives. The README for the current version,
1.3, points out that it doesn't take advantage of many of the facilities offered by X but that this

G-5

is intended to change in the future. The software can probably be found on prep.ai.mit.edu. A
1.4beta may be found on uunet. [2/90]

ScriptWorks is Harlequin's software package for previewing and printing PostScript(R) de-
scriptions of text and graphics images; previewers for X are available. For information call +44-
223-872522 or send email to scriptworks-request@uk.co.harlqn.

Digital's dxpsview runs on UWS 2.1 and 2.2.

Sun's pageview runs with the Xll/NeWS server.

G.3.8 How do I convert Mac/TIFF/GIF/Sun/PICTFace/img/FAX/etc images to the X
Window System format? The likeliest program is an incarnation of Jef Poskanzer's useful++
Portable Bitmap Toolkit, which includes a number of programs for converting among various image
formats. It includes support for many types of bitmaps, gray-scale images, and full-color images.
The latest version, PBMPLUS, was posted to the net about 11/22/89; it is also on the R4 tape
under contrib/clients/pbmplus. Useful for viewing some image-formats is Jim Frost's xloadimage,
a version of which is in the R4 directory contrib/clients/xloadimage.

G.3.9 Where can I obtain other language bindings than C to the X Window System libraries?
Versions of the CIX Lisp bindings are part of the X11R3 and X11R4 core source distributions.
The latest version of CLX (R4.1) is available from expo for ftp as contrib/CLX.R4.1.tar.Z [Chris
Lindblad (cjl@AI.MIT.EDU), 4/90]; this version fixes bugs reported against the R4 distribution.

Ada bindings were written by Mark Nelson and Stephen Hyland at SAIC for the DoD. The
bindings can be found on hapo.sei.cmu.edu or on wsmr-simtel20.army.mil and are also in the Ada
Software Repository (ASR). R3 bindings should be available by the end of 1/90.

Prolog bindings (called "XWIP") written by Ted Kim at UCLA while supported in part
by DARPA are available by FTP on MIT's expo in the xwip.tar.Zl file. These prolog language
bindings dcpend on having a Quintus-type foreign function interface in your prolog. The developer
has gotten it to work with Quintus and SICStus prolog. Inquiries should go to xwip@cs.ucla.edu.

GHG is developing X bindings and a complete Ada re-implementation of X; check Lionel
Hanley at 713-488-8806.

Rational announced in October 1990 that it had placed an Ada reimplementation of the MIT
C-based Xlib on expo.lcs.mit.edu. The two files are:

contrib/ada. xlib. README 4kb
contrib/ada.xlib.tar. Z 2.9Mb

This Ada version of Xlib is compatible with X11R4. It is a beta release with the release
number of 560. The sources are about 10MB when they are restored from the tar file, of which
3MB is PostScript documentation. Makefiles and Imakefiles are also included. This is a complete
reimplementation of Xlib; it is not just an Ada skin over the C libraries. The Xlib compiles and runs
with the Rational native R1000 Ada compiler (Deltal) and Delta2 versions and with the TcleSoft
TeleGen2 68K UNIX compiler (version 1.4) under SunOS (version 4.0.3 or later).

G.4 X Window System Programming Questions and Answers

G.4.1 Why do I get an error message that my display does not open when I run an X client
program? This error message may have been output by the X Window System or the X client
program. What has happened is that you have attempted to open the display of an X Window

G-6

client on a computer that either does not have a display monitor or the computer with the display
monitor doesn't have an X server running on it. Before giving you some solution ideas, here is
some background information to help you better understand what the X Window System is up
to. One of the features of the X Window System is the ability to have an X client execute on one
computer on a network and perform all of its display input and output on another computer with
a graphical display. If you don't designate an alternate display when you first execute an X client,
the X Window System automatically uses the display monitor of the computer it is running on.
When such a monitor doesn't exist or if no X server is running on the computer that is supposed
to receive and send display information, then the X client will not be able to open a display. To
solve the problem, either run the X client program from the console keyboard of the "-nq.chine that
has a graphical display monitor and an X server running on it. Otherwise, check - , X client
program has a -display command line option which allows you to designate an alternate display for
the X client to use. To get an X server running on a computer with a graphical display monitor,
enter 'xinit' from the console keyboard of the computer.

G.4.2 What is the difference between a Screen and a screen? The Screen is an X Window
System Xlib structure which includes the information about one of the monitors or virtual monitors
which a single X display supports. An X server can support several independent screens. They are
numbered unix:0.0, unix:0.1, unix:0.2, etc; the screen or screen.number is the second digit (0, 1,
2, etc.) which can be thought of as an index into the array of available Screens on the particular
Display connection.

The X functions which you can use to obtain information about the particular Screen on
which your application is running typically have two forms - one which takes a Screen and one
with takes both the Display and the screen.number. In Xt-based programs, you typically use
XtScreen(widget) to determine the Screen on which your application is running, if it uses a single
screen. (Part of the confusion may come from the fact that some of the functions which return
characteristics of the Screen have Display in the names - XDisplayWidth, XDisplaylleight, etc.)

G.4.3 Why doesn't anything appear when I run this simple X client program?

thewindow = XCreateSimpleWindow(the-display,
root _window,size-hints.x,size-hints.y,
size-hints .width,sizehints.height,BORDERWIDTH,
BlackPixel(the-display,the-screen),
WhitePixel(the-display,the-screen));

XSelectInput (the-display, the-vindow, ExposureMask I ButtonPressMask I
ButtonReleaseMask);

XMapWindow (thedisplay,the.window);

XDrawLine(the-display,the-window,theGC,5,S, i00. .00);

You are correct to map the window before drawing into it. However, the window is not
ready to be drawn into until it actually appears on the screen - until your application receives an
expose event. Drawing done before that will generally not appear. You'll see code like this in many
programs; this code would appear after a window was created and mapped:

while C!done)

G-7

XNextEvent (the.display ,kthe.event);
switch (the.event.type) {

case Expose: /* On expose events, redraw */
XDrawLine(the-display,the.vindow,theGC,5,5,i O0,100);
break;

Note that there is a second problem: some X servers don't set up the default graphics context
to have reasonable foreground or background colors, and your program should not assume that the
server does, so this program could previously include this code to prevent the case of having the
foreground and background colors the same:

theGC-.values .foreground=BlackPixel(the-display,thescreen);
theGCvalues.background=WhiePixel(the-display,the..screen);
theGC = XCreateGC(the-display,the.window,

GCForeground l GCBackground,ktheGC-values);

Note that the code uses BlackPixel and WhitePixel to avoid assuming that 1 is black and 0
is white or vice-versa. The relationship between pixels 0 and 1 and the colors black and white is
implementation-dependent. They may be reversed, or they may not even correspond to black and
white at all.

G.4-.4 Why doesn't my program get the keystrokes I select for? The window manager controls
how the input focus is transferred from one window to another. In order to get keystrokes, your
program must ask the window manager for the input focus. To do this, you must set up what are
called hints for the window manager. If your applications is Xlib-based, you can try something like
this:

XWMHints wmhints;

wmhints.flags = InputHint;
wmhints.input = True;
XSetWMHints(dpy, window, hints);

G-8

Appendix H. IDEFo Drawing Model Project File Format

I.1 Project File Format

Listed below is the file format for the project file saved by the drawing model demonstration
program.

IDEFO Drawing Model Project File
Project Name
File Created nn 11/11/90 16:19:34

DIAGRAM (A-0)

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
C NUMBER: <character string>
RELATED PARENT BOX: <character string>
--DRAWABLE TABLE--
FED ROW : <character string 1> ... <character string 25>
NOTE ROW : <character string 1> ... <character string 25>
FOOTNOTE ROW : <character string 1> ... <character string 25>
METANOTE ROW : <character string 1> ... <character string 25>
SQUIGGLE ROW : <character string 1> ... <character string 25>
LABEL ROW : <character string 1> ... <character string 25>
LINE SEGMENT ROW : <character string 1> ... <character string 25>
BOX ROW : <character string 1> ... <character string 25>
TERMINATOR ROW : <character string 1> ... <character string 25>
CONNECTOR STUB ROW: <character string 1> ... <character string 25>
FEO

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
PICTURE: <character string>
NOTE

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
CONTENTS: <character string>
FOOTNOTE

NAME: <character string>

H-1

VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
CONTENTS: <character string>
UPPER LEFT X MARKER: <integer>
UPPER LEFT Y MARKER: <integer>
RELATED SQUIGGLE: <character string>
METANOTE

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
CONTENTS: <character string>
SQUIGGLE

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <character string>
Y POSITION: <character string>
PARENT DIAGRAM: <character string>
X OTHER POSITION: <integer>
Y OTHER POSITION: <integer>
RELATED LINE SEGMENT: <character string>
RELATED FOOTNOTE: <character string>
RELATED LABEL: <character string>
LABEL

NAME: <character string>

VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
TEXT: <character string>
FOR A DATA ELEMENT: <TRUE I FALSE>
RELATED SQUIGGLE: <character string>
RELATED DATA ELEMENT: <character string>
RELATED CALL: <character string>
LINE SEGMENT

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>

H-2

PARENT DIAGRAM: <character string>
RELATED START CONNECTOR STUB: <character string>
RELATED END CONNECTOR STUB: <character string>
RELATED SQUIGGLE: <character string>
RELATED DATA ELEMENT: <character string>
BOX

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
DRE: <character string>
RELATED DECOMPOSITION DIAGRAM: <character string>
RELATED ACTIVITY:
--ICOM CONNECTIONS TABLE--
INPUT ROW : <character string 1>... <character string 10>
CONTROL ROW : <character string 1>...<character string 10>
OUTPUT ROW : <character string 1>.. .<character string 10>
MECHANISM ROW: <character string .>...<character string 10>
TERMINATOR

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
SYMBOL: <terminator symbol>
DIRECTION: <terminator direction>
ICOM CODE: <ICOM connection>
RELATED CONNECTOR STUB: <character string>
CONNECTOR STUB

NAME: <character string>
VERSION: <character string>
LAST CHANGED: <character string>
X POSITION: <integer>
Y POSITION: <integer>
PARENT DIAGRAM: <character string>
RELATED LINE SEGMENT: <,haracter string>
RELATED BOX: <character string>
RELATED TERMINATOR: <character string>

DIAGRAM (AO)

DIAGRAM (An)

11-3

END OF FILE

1.2 Explanation of the Project File and Internal Data Structure

The drawing model file is a copy of the contents of the drawing model internal memory data
structure. The drawing model data structure is a variant record. The record contains fields common
to all drawable objects and fields unique to each drawable object. The common fields are the first
seven fields (NAME..PARENT DIAGRAM) listed in the file format above for each of the drawvable
objects. The records and fields in the drawing data model data structure are mapped directly from
the drawing model diagram: drawable objects became records, attributes of objects became simple
record fields, 1-to-1 and 1-to-M relationships became matrix record fields.

Most of the fields in the drawing model data structure are either a character string, ail
integer, or a boolean data type. However, certain fields contain specific enumerated types. These
are described below:

<ICOM connection> == INPUT I CONTROL I OUTPUT I MECHANISM

<terminator symbol> == ARROW I BOUNDARY-ARROW] TUNNEL-ARROW I TO-ALL I
FROM-ALL I SIMPLE-TURN I JUNCTOR I DOT I A-NULL

<terminator directioi.- ==

NONE I LEFT I RIGHT I UP I DOWN I -- ARROW and SIMPLE-TURN
INPUT I CONTROL I OUTPUT I MECHANISM I -- BOUNDARY-ARROW
HIDDEN-SOURCE I HIDDEN-DESTINATION I -- TUNNEL-ARROW
TO-ALL I FROM-ALL I -- TO-ALL, FROM-ALL
RIGHT-UP I LEFT-UP I
RIGHT-DOWN I LEFT-DOWN I -- JUNCTOR (horizontal-curve)
UP-RIGHT I UP-LEFT I D
OWN-RIGHT I DOWN-LEFT -- JUNCTOR (vertical-curve)

In addition to the fields resulting from the data model mapping, the drawing model data
structure also contains record fields used to implement a diagram hierarchy. Each of the diagrams
(either in memory or in a file) is a node in a project tree. The root of the tree is the context diagram
which always exists; all other diagrams are optional. When a box in a diagram is decomposcd, this
results in the creation of a leaf, that is, a decomposition diagram. Intermediate nodes in the projcct
tree are decomposition diagrams whose one or more boxes have also been decomposed. Each box in
a diagram has either none or one unique decomposition diagram. The project tree is doubly-linked.
each diagram knows who its children diagrams are and each child diagram knows who its parcnt
diagram is. This is all accomplished through the relationship set up between boxes and diagrams.

The doubly-linked project tree allows a driver program to move among the diagrams in ti
tree in order to display, add, delete, modify, and save diagrams. The diagrams are saved to a file
in a prefix tree traversal format with the context diagram saved first and its lowest numbercd box
saved next.

11-4

Appendix I. Executive Overview

L I Introduction

Entity-relationship diagrams (ERDs) and object-oriented design (OOD) have recently caught
the attention of graphical user interface and CASE tool programmers. They have been attracted
to ERDs because of their use in modeling the objects, the object attributes, and the inter-object
relationships of a system. They have been drawn to OOD because of its use in the building
block approach to user interface design and in its encapsulation of data structures with methods.
Ada offers constructs such as packaging, information hiding, and strong typing that provide the
implementation fundamentals for ERD modeling and OOD; however Ada has not been the language
of choice for graphics programming. One drawback has been the lack of an adequate technique for
mapping ERD diagrams to actual Ada source code. Another drawback has been the cumbersome
text input and output offered for Ada and the lack of a comprehensive Ada graphical support
environment. This paper addresses solutions to these issues. First, it offers a six-step process
fur transforming an entity-relationship model of a system into actual Ada source code and tells
the results of using this process in the transformation of the IDEF0 drawing model. Second, it
describes the design of the machine-independent Ada graphical environment (MAGSE) and its
implecmentation using Ada pragma interface calls to the C-based xlib library of the X Window
Systcm. Third, it summarizes how the the drawing model and the MAGSE serve as components
in the partial implementation of a CASE tool called SAtoollI.

L2 ERD-to-OOD Transformation

Entity-relationship diagrams provide a method for identifying the entities of a system, the
attributes of those entities, and the entity interrelationships. After ERDs are created to model a
s3 stem, a six step process can be followed to transform the contents of the ERDs into actual Ada
source code.

In step one, create an entity-relationship model of a system to identify the entities, attributes,
and relationships in the system. Label all relationships as one-to-one, one-to-many, or maniy-to-
many. In step two, look at the entities as objects and consider the implementation of the s stem
uijg these objects.)etermine if these objects completely identify all the objects of the s3stem
Luing modeled. In step three, look at the many-to-many relationships as objects and consider the
implementation of them as correlation table objects. For the many-to-one relationships consider
putting a referencing attribute field in the I object. For the one-to-one relationships, consider which
ubject should have the referencing attribute field. In step four, modify the entity-relationship niodel
tu reflect the lessons learned from steps two and three. Continue iterating through steps two and
thrcc until the entities, attributes, and relationships completely model the system. To test the
s stenm, use what if situations that the system should be able to handle, and walk through the
model to check if the entities, attributes, and relationships model the particular situation. In
step five, codc each entity and many-to-many relationship of the model as an object. Code the
descriptive attributes of relationships or entities as record fields in each object. Include in the
many-to-many relationship data structures a relationship tul)le containing referencing attributecs.
Assign each object a type class package, an object manager package, and al input/outl)ut package.
In the manager and input/output packages, with in the types class package.

In step six, create constructor procedures in the object manager)ackage to set descriptive
attributes and referencing attributes for entities on the one side of a one-to-many or one-to-one
relationship. Create selector functions to retrieve attributes and all relationships. The constructors
'11d selectors should completely represent all the visible routines from an object manager package.

I-I

The types utilized in the parameters for these routines should completely represent all visible
types from an object manager package. This completeness and visibility will be correct if the
entity-relationship model completely contains all entity attributes and entity relationships. If any
additional visible constructors ol selectors need to be added to an object manager package, examine
the cntity-relationship model to see if a corresponding attribute or relationship exists for the new
routine. If one does not exist, one of the following is probably true:

* The routine is a generalization of another currently visible routine

9 The routine corresponds to an attribute or an entity relationship that was-previously over-
looked

e The routine has been incorrectly made visible and should only appear in the body of the
object manager package

This process of tranforming an entity-relationship model of a system into Ada source code
was applied to the drawing model of IDEFO. IDEFO is the ICAM Definition Method Zero graphical
notation language adopted by the U.S. Air Force to produce a function model of a manufacturing
system or environment (23:1-1). The Air Force Institute of Technology (AFIT) is conducting
research in the use of IDEFo in the requirements analysis phase of the software lifecycle and its
use in a CASE tool. Researchers at AFIT have divided the modeling of IDEFo into -two models,
an essential model and a drawing model. The essential model involves those parts of IDEF 0 that
represent the semantics of the language and include such things as activities and data elements. The
drawing model comprises the-graphical constructs used to represent the particular IDEF0 analysis
such as boxes and line segments (31:2-7).

When the six-step transformation process was applied to the IDEF0 drawing model, it resulted
in an autonomous packaging ofthe eleven drawing objects (entities) in the model: diagram, box,
FEO (for exposition only), footnote, label, metanote, note, squiggle, connector, terminator, and line
scgment. The autonomy between- the -packages came about partly because of the transformation
process and partly because of the desire to discourage any coupling. Each of the-packages has
no procedure or function coupling with the other packages. All ties among the various-drawing
objects are maintained through the use of drawing object name strings. Because the diagram

object maintains a);5 of the drawing objects that are on a diagram, it withs in the other drawing
object packages in order to use their operations. Over top of these autonomous-packagcs arc placed
uthicr packages to handle the intcr-model and intra-modcl macro operations and object constraint
management for the drawing model. Altogether, the drawing model packages total 14,000 lines of
commented Ada source code.

L3 Machine-independent Ada Graphical Support Environment

A machine-independent Ada graphical support environment (MAGSE) is needed to provide
an interface between any window-system and an Ada application. The MAGSE should sit on top of
a window system, shielding the-application from it while still supplying the application to perform
graphical opertions. Why does-Ada need a MAGSE like this? One reason is to contribute to the
rather small amount of window-and-graphical support components written for Ada. A sccond rcason
is thc intricacies and numerous-subtle changes needed in an application when converting it from
onc kind of window system to another. A third reason is thc amount of detail-involved-in creating a
%6idow with its many attributes and then performing event-checking on those windows. A fourth
reason is the reliance of an-application on a specific window system to supply sophisticated windows
such as menus or dialog boxes. What makes the MAGSE machine-independent? The MAGSE
is designed to be machine-independent in as far as Ada and the underlying window system are
independent.

1-2

An object-oriented design approach to the MAGSE results in the creation of seven classes:
drawing primitive, 2-D plane, 2-D matrix stack, 3-D pyramid, 3-D matrix stack, input device, and
window manager.

The drawing primitive class contains lines, rectangles, circles, and text strings. It also has
Is to draw and erase each of these primitives. One or more drawing primitives can be used

I astruct complex drawing objects.

The 2-D plane class contains a two-dimensional plane. It also has methods to set the plane's X
and Y dimensions, and clip and render complex primitives in the plane. The 2-D malrix stack class
cuontains a stack for storing matrices which are used in performing two-dimensional transformations.
It also has methods to push a matrix on the stack, pop a matrix off the stack, nmltiply another
matrix times the matrix on the top of the stack, and perform two-dimensional rotate, scale, and
translate operations on the top matrix of the stack.

The 3-D pyramid class contains a three-dimensional perspective pyramid. It also has methods
to set the X, Y, and Z dimensions of the pyramid, set the viewing location and viewing perspective
of the pyramid, and clip and render complex primitives in the p3 ramid. The 3-D matrix slack class
cuntains a stack for storing matrices which are used in performing three-dimensional transforma-
tions. It also contains methods to push a matrix on the stack, pop a matrix off the stack, multiply
another matrix times the matrix on the top of the stack, and perform three-dimensional ro.ate,
scale, and translate operations on the top matrix of the stack.

The input device class contains a keyboard, a cursor and a 3-button mouse. It has methods
to read the keyboard input, get the cursor position, detect mouse movement, and detect which
mouse button was clicked. It also has methods to detect when a window event occurs with these
windows.

The window manager class contains a window manager object. This object has methods to
allocate and deallocate window storage and to retrieve a specific window froni storage. It allocates
di awing windows, acknowledge windows, confirm windows, dialog windows, colunma menu %% i ado%%s,
sign windows, and text windows. The class has additional methods to create, display, hide, and
destroy these windows.

The MAGSE design provides for it to be an interface between any window system and an
Ada application. It sits on top of a window system, shielding the application from it and thereby
ci eating a well-defined line of separation between the application and its graphical nIeeds. A wv.indow
b%'teCin that needs such an interface is the X Window System. The MAGSE implementatiou serves
as as Ada graphical interface to the xlib library of the X Window System.

The Massachusetts Institute of Technology (MIT) designed the X Window System with win-
dluo mechanisms rather than window policy (25). 3ecause of this intention, the X Window S3stcm
an be used to mimic another window system while taling adsvantagc of the net~orking capabilities

of X. This generic window ability brings complications and complexity with it. To just create a
wiidow, establish its many graphical properties, and customize it to a certain style takes at least
21 X library function calls. In addition, ten of those calls return values or data structures that are
iceded as parameters to subsequent function calls that involve the window. The MAGSE captures

'l these complicated structures into a single record type and the numerous function calls into a few
iiiacro-fuaictions. Some window flexibility is lost using the MAGSE, but much easier amd simpler
\imdow handling is gained.

The object code for the window and graphics functions available in the X \Vindow System
a,- cunt.ained in a C-based library called xlib. Ada provides a compiler directive called a pragma

iit.erface which allows calls to C libraries to be made from Ada programs. Through the use of
Ada pragma interface calls (Ada bindings) developed by SAIC (15), the MAGSE can access the X
\Vindow System's xib and an Ada program can become an X Window client application. IlI".xer,

1-3

these Ada bindings are complicated to use. Once again the MAGSE comes through by offering a
level of abstraction between an application program and the complexity of the xlib and the Ada
bindings to the xlib . The MAGSE also provides specialized windows, such as menus and dialog
boxes, that are not a part of the X Window System xlib. The aspiring Ada programmer doesn't
have to spend days studying an xlib reference manual, examining sample X Window programs in C
and Ada, and searching through the SAIC source code for parameter types and package names. lie
or she can just with the MAGSE interface into the application, and then declare variables and make
subprogram calls as directed by the MAGSE interface specifications. By doing this, the application
will become a genuine X client.

An application's view of the MAGSE is the MAGSE interface package. This package contains
the package specifications for all the MAGSE package bodies. The MAGSE interface package
contains no sign of complicated structures or numerous function calls to the X Window System
or any other window system. All this detail is kept secure in the various package bodies. The
application sees only a window identification type, choices of specialized windows, basic window
manipulation routines, and basic drawing primitive routines. In the MAGSE package bodies, the
internal structures, functions, and procedures are tailored to the specific window system that the
MAGSE will be placed on top of. By implementing the MAGSE package bodies first for the X
Window System, its structures and routines dictate mechanisms but no policy. The only restrictions
on the window system are those imposed by the specialized windows offered by the MAGSE to an
application. These windows (drawing, acknowledge, confirm, dialog, column menu, sign, and text)
are not provided by the X Library (xlib) of the X Window System, but instead are implemented
right in the MAGSE. Some of the ideas for implementing these specialized windows came from
the X Window two-dimensional drawing tool developed by Cheng (5). Altogether, the MAGSE
packages total 8,000 lines of commented Ada source code.

1.4 SAoolI - an IDEFo Project Editor

The Ada source code that came from the ERD-to-OOD transformation of the IDEF0 drawing
niodel serves as a component along with the MAGSE in the implementation of a CASE tool called
SAtoollI. SAtoolIl is designed to be a combined IDEF0 graphical project editor and data dictionary
editor. It is only partially implemented at this time. The drawing model component provides the
internal IDEF 0 structures for SAtoollI while the MAGSE provides the the graphical features and
the specialized windows for the SAtoollI user interface. Because of its use of the MAGSE, SAtoolli
takes advantage of the resources of the X Window System by utilizing the generic window and
g laplhical features offered through the MAGSE interface. This keeps all X Window System library
calls out of the actual SAtoolll application code.

1.5 Conclusions

This paper has provided solutions to the issues causing Ada to be shunned as a programming
lanluage for ERD modeling and graphical applications. It offered a six-step process for transform-
ing an ERD model of a system into actual Ada source code and told about the use of this process
in the transformation of the IDEF 0 drawing model. It also described the design of the machine-
hndcpcndcnt Ada graphical cnvi,'onmcnt (MAGSE) and its implcmcitation using Ada piagnJa iin-
tcface calls to the C-based xlib library of the X Window System. In additon, it summarized how
the the drawing model and the MAGSE serve as components in the partial implementation of a
CASE tool called SAtoolIl.

SAtoollI with its drawing model data structures, user interface, and graphical features stands
a, an example of a CASE tool that successfully incorporates entity-rclationship imodeling amd
graphics into an Ada al)plication.

1-4

Bibliography

1. Austin, Kenneth A. and others. "An Entity Relationship Modeling Approach to IDEF0 Syn-
tax," Proceedings of IEEE 1990 National Aerospace and Electronics Conference NAECON
1990, 2:641-645 (May 1990).

2. Barth, Paul S. "An Object-Oriented Approach to Graphical Interfaces," ACM Transactions
on Graphics, 5:142-172 (April 1986).

3. Booch, Grady. Software Components with Ada. Menlo Park, CA: Benjamin-Cummings, 1987.

4. Booch, Grady. Object-Oriented Design with Applications. Redwood City, CA: Benjamin-
Cummings, 1991.

5. Cheng, WIlliam Chia-Wei. "tgif : Xlib-based 2-D Drawing Tool under Xll." C computer
software source code, 1990.

6. Connally, Ted D. Common Database Interface for Heterogeneous Software Engineering Tools.
MS thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1986 (AD-A189628).

7. Dodani, Mahesh H. and others. "Separation of Powers," Byte, 14:255-262 (March 1989).

8. Dromey, Geoff. Program Derivation: The Development of Programs from Specifications. Syd-
ney, Australia: Addison-Wesley, 1989.

9. Foley, James and others. Computer Graphics: Principles and Practice (2nd Edition). Mas-
sachusetts: Addison-Wesley, 1990.

10. Foley, Jeffrey W. Design of a Data Dictionary Editor in a Distributed Software Development
Environment. MS thesis, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, June 1986 (AD-A172406).

11. Grudin, Jonathan. "The Case Against User Interface Consistency," Communications of the
ACM, 32:1164-1173 (October 1989).

12. Hartrum, Thomas C. "IDEFo Requirements Analysis." Class handout describing the use of
IDEFO for software requirements analysis, October 1989.

13. Ilartrum, Thomas C. System Development Documentation Guidelines and Standards, January
1989.

14. Ilartrum, Thomas C. "Evaluation Form Comments for SAtool." Sorted comments on SAtool
from student evaluation forms, January 1990.

15. Hyland, Stephen J. anr' Mark A. Nelson. "Ada Bindings to the X Window System." Ada
computer software source code, 1987.

16. IBM. AIX. Technical Report, IBM, 1989. IBM AIX Marketing.

17. Johnson, Eric F. and Kevin Reichard. X Window Applications Programming. Oregon: MIS
Press, 1989.

18. Johnson, Steven E. A Graphics Editor for Structured Analysis with a Data Dictionary. MS
thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, December 1987 (AD-A190618).

19. Keim, Eric. "The KEYSTONE System Design Methodology," Ada Letters, 9:101-108
(July/August 1989).

BIB-1

20. Kitchen, Terry L. An Object.Oriented Design and Implementation for the IDEFo Esssential
Data Model with an Ada Based Expert System. MS thesis, AFIT/GCS/ENG/90D-07, School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB 011, December
1990.

21. Lewin, Stuart. "Ada Implementation of an X Window System Server," Tri-Ada 1989 Proceed-
ings, pages 30-38 (1989).

22. Linnel, Dennis. "Graphical Interfaces Give Users Tools to Explore," Government Computer
News, 9:91-96 (September 1990).

23. Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Com-
mand, Wright-Patterson AFB, OH 45433. Integrated Computer-Aided Manufacturing (ICA"M)
Function Modeling Manual (IDEFo), June 1981.

24. Myers, Brad A. "A Taxonomy of Window Manager User Interfaces," IEEE Computer Graphzcs
and Applications, 8:65-84 (September 1988).

25. Nye, Adrian and others. Xlib Reference Manual for Version 11. Massachusetts. O'Reilly and
Associates, Inc, 1988.

26. Pountain, Dick. "The X Window System," Byte, 14:353-360 (January 1989).

27. Ross, Douglas T. "Structured Analysis (SA): A Language for Communicating Ideas," IEEE
Transactions on Software Engineering, 1:16-34 (January 1977).

28. Sabella, Paolo and Ingrid Carlbom. "An Object-Oriented Approach to the Solid Modeling
of Empirical Data," IEEE Transactions on Computer Graphics and Applications, 9:24-35
(September 1989).

29. Scheifler, Robert W. and Jim Gettys. "The X Window System," ACM Transactions on Graph-
ics, 5:79-109 (April 1986).

30. Shlaer, Sally and Stephen J. Mellor. Object-Oriented Systems Analysis : Modeling the World
in Data. New Jersey: Prentice-Hall, 1988.

31. Smith, Nealon F. SAtool II: An IDEFo Syntax Data Manipulator and Graphics Editor. MS
thesis, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OI, December 1989 (AD-A215289).

32. Sommerville, Ian. Software Engineering. Massachusetts: Addison-Wesley, 1989.

33. Sun Microsystems, Inc. Sun View Programer's Guide. Mountain View, CA, September 1986.

34. Thomas, Charles W. An Automated/Interactive Software Engtneering Tool to Generate Data
Dictionaries. MS thesis, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OII, December 1984 (AD-A152215).

35. Thomas, Dave. "What's in an Object?," Byte, 14:231-240 (March 1989).

36. Urscheler, James W. Design of a Requirement Analysis Design Tool Thtegrated with a Data
Dictionary in a Distributed Software Development Environment. MS thesis, School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB 01, December 1986
(AD-A177663).

37. Wegner, Peter. "Learning the Language," Byte, 14:245-253 (March 1989).

38. Young, Douglas. X Window Systems: Programming and Applications with Xt. New Jersey:
Prentice Hall, 1989.

BIB-2

P For Approved
REPORT DOCUMENTATION PAGE -MB No. 0704.0188

Public-tcDorting burden ,C this collection of niormation is estimated to .veraqe 1 hour Per respo se. including the time for reviewing instructions. sear(hing existing data sources.
gthering ari maitaining the data neeoed ano completing an reviewnq the iolection oinf ormatir. sentd comments regarding this burden estimate or any other a pect of this

ollctiii ii in ukff.r. ,d ily S tiOns fo r teoavinci lhis turcoen t(. a tshinqton HeadQuarters Services. Uirectorate ho informationri Operations drid lreprts. W 15 Jefferson
Oavis Hiqh'ay. 56ite 1204

.
riington. vA 22202-4302.and to the Olhfeof Management and 8udget. Paperwor Reduction Project (0104.0t18). Washington. DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Deebr1990 I Master's Thesis
'4. TITLE AND SUBTITLE '5 FUNDING NUMBERS

AN ADA-BASED FRAMEWORK FOR AN IDEFo CASE TOOL USING
THE X WINDOW SYSTEM

6. AUTHOR(S)

Jay-Evan J. Tevis II, Capt, USAF

'7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/90D-15

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
I AGENCY REPORT NUMBER

=11. SUPPLEMENTARY NOTESI

12z.- DST, IBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved-for public release; distribution unlimited

I 7;. ABSTRACT (Maximum 200 words)

This thesis documents the design strategy and implementation methodology used in developing an Ada-based
framework for SAtoolII using the X Window System. SAtooIII is designed to serve as an IDEF0 graphical
-project editor and data dictionary editor. IDEF0 is the ICAM Definition Method Zero graphical notation
language adopted by the Air Force to produce a function model of a manufacturing system or environment.
The Air Force Institute of Technology is conducting on-going research in the use of IDEFO in the requirements
analysis phase of the software lifecycle. The thesis describes how SAtoolII was designed around an abstract
entity-relationship model of the IDEFo language, an abstract model that was formulated in earlier research
at AFIT into an essential model and: a drawing model. It also describes the design of a machine-independent
Ada-graphical support environment which provides fundamental multi-window and graphical capabilities, while
shielding an Ada application from the complexity of specific window systems. Following the design information,
the thesis describes how the SAtoolIl program was implemented incrementally, by developing an essential model I
component, drawing model component, machine-independent Ada graphics support environment, and graphical
-user interface. Plans exist to integrate these components in follow-on research.

f

14. SUBJECT TERMS 15. NUMBER OF PAGES

-Computer Aided Design, Software Engineering, Computer Graphics, Ada Program- 157
mirg Language, Object Oriented Design, X Window System 16. PRICE CODE

17 SECURITY CLASSIFICATION 18. -SECURITY -SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
I OF-REPORT OF THIS PAGE OF ABSTRACT

-UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540.01-280.5500 Standard Form 298 (Rev 2-89)
he$P1ibed by ANSI Std Z39-18

